亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

龍井茶葉品質(zhì)的電子鼻檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對茶葉品質(zhì)感官審評的不足,采用電子鼻檢測手段,對4個(gè)不同等級的龍井茶作等級判別。對傳感器信號進(jìn)行多因素方差分析得出:不同容器容積和不同采樣時(shí)刻對傳感器的響應(yīng)信號有著顯著的影響。通過主成分(PCA)、線性判別(LDA)和BP神經(jīng)網(wǎng)絡(luò)方法對各茶葉樣品進(jìn)行了分類判別。PCA對于等級差別較近的茶葉區(qū)分結(jié)果不太理想;而LDA相對于PCA有較好的區(qū)分效果;設(shè)計(jì) BP神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)為30-12-4,通過對網(wǎng)絡(luò)進(jìn)行適當(dāng)訓(xùn)練,總的測試回判率可達(dá)到

    Abstract:

    90%。 An investigation was made to determine the four tea samples with different quality grade by using an electronic nose (e-nose). The response signals of e-nose were analyzed under different sampling conditions by variance analysis and multivariance analysis. Analytical results showed that the different volume of vials and the different collection times have significant effect on the response signals of the e-nose. Then the data were processed using principal components analysis (PCA), linear discrimination analysis (LDA) and artificial neural network (ANN). The results analyzed by LDA were superior to that by PCA, which could distinguish all the tea samples completely. However, PCA method could not estimate sample of A280 correctly. Further 90% correct classification was achieved for all the tea samples using the BP neural network.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

于慧春,王俊,張紅梅,于勇.龍井茶葉品質(zhì)的電子鼻檢測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(7):103-106.[J]. Transactions of the Chinese Society for Agricultural Machinery,2007,38(7):103-106.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: