亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于近紅外光譜分析法的奶粉品質快速檢
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Determination Method of Milk Powder Quality by Near-infrared Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    選擇11個品牌的10多種配方奶粉,共80個樣品,使用PDA型近紅外光譜儀采集奶粉漫反射光譜,波長范圍1089~2219nm。對光譜進行了SNV、軟閾小波消噪及一階微分預處理,通過比較主成分在不同波長上的權重分布,選擇不同波段建立校正模型和進行預測精度分析。結果表明,奶粉的蛋白質和脂肪的近紅外光譜信息主要分布于1100~1400nm和1800~2200nm波段內,采用小波消除原始光譜的噪聲能提高校正模型的穩(wěn)定性和預測精度,可以利用PDA型近紅外光譜快速檢測多品牌、多類型配方奶粉中蛋白、脂肪含量。

    Abstract:

    Eighty milk powder samples which represented over 10 formulae of ingredients from 11 commercial brands were collected and a PDA type near-infrared spectrometer was used to obtain their diffusion reflectance spectra (1nm resolution) within the wavelengths of 1089~2219nm. The obtained spectra were pre-treated with standard normal variate correction (SNV), wavelet denoise and 1-order differentiation method. Through comparing the weighted distribution of the milk powder’s five principal ingredients at various wavelengths, different ranges of wavelength were selected to establish calibration models and to analyze their prediction accuracy. The results showed that spectrum information of milk powder’s protein and fat composition was mainly distributed within the wavelengths of 1100~1400nm and 1800~2200nm. It was shown that wavelet denoise was an excellent method for pre-processing spectra, which could significantly enhance the stability of calibration models and prediction accuracy. The present study reveals that it is feasible to determine the concentrations of protein and fat in milk powder of various origins with a PDA type near-infrared spectrometer. 

    參考文獻
    相似文獻
    引證文獻
引用本文

顏輝,陳斌,朱文靜.基于近紅外光譜分析法的奶粉品質快速檢[J].農業(yè)機械學報,2009,40(7):149-152. Determination Method of Milk Powder Quality by Near-infrared Spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2009,40(7):149-152.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期: