亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于遷移學(xué)習(xí)的FDR土壤水分傳感器自動(dòng)標(biāo)定模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFB0304205)和國(guó)家自然科學(xué)基金項(xiàng)目(61533007)


Automatic Calibration Model of FDR Soil Moisture Based on Transfer Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)頻域反射技術(shù)(FDR)傳感器人工標(biāo)定數(shù)據(jù)擬合誤差大的問(wèn)題,引入其他地區(qū)數(shù)據(jù)作為輔助數(shù)據(jù),建立了基于遷移學(xué)習(xí)的自動(dòng)標(biāo)定模型。該模型將FDR目標(biāo)使用地點(diǎn)采集的數(shù)據(jù)作為源域數(shù)據(jù),結(jié)合輔助數(shù)據(jù)與少量源域數(shù)據(jù),使用TrAdaBoost算法即可得到準(zhǔn)確的FDR傳感器標(biāo)定模型。將面向分類問(wèn)題的TrAdaBoost算法改進(jìn)為適用于本文面向回歸的TrAdaBoost算法,將TrAdaBoost算法的基學(xué)習(xí)器由AdaBoost改為XGBoost,改進(jìn)了更新權(quán)重誤差率的計(jì)算方法。首先使用XGBoost對(duì)輔助數(shù)據(jù)進(jìn)行訓(xùn)練,得到初始標(biāo)定模型;然后在目標(biāo)地點(diǎn)采集少量數(shù)據(jù),使用改進(jìn)后的TrAdaBoost算法對(duì)初始標(biāo)定模型進(jìn)行校準(zhǔn),即可得到準(zhǔn)確的FDR標(biāo)定模型。將10個(gè)不同地區(qū)站點(diǎn)數(shù)據(jù)作為輔助數(shù)據(jù),訓(xùn)練得到初始標(biāo)定模型,將沈陽(yáng)地區(qū)6個(gè)站點(diǎn)分別作為目標(biāo)使用地點(diǎn),取80%數(shù)據(jù)作為源域數(shù)據(jù),進(jìn)行模型校正,其余20%數(shù)據(jù)用于測(cè)試。測(cè)試結(jié)果的平均準(zhǔn)確率為99.1%,說(shuō)明基于遷移學(xué)習(xí)的自動(dòng)標(biāo)定模型是有效和準(zhǔn)確的。

    Abstract:

    Aiming at the problem of large fitting error of manual calibration data for FDR sensors, the data from other regions were introduced as auxiliary data, and an automatic calibration model based on migration learning was established. In this model, historical data from other regions were introduced as auxiliary data. Data collected from FDR targets were used as source data. Combined with auxiliary data and a small amount of source data, an accurate FDR sensor calibration model can be obtained by using TrAdaBoost algorithm. TrAdaBoost algorithm for classification problem was improved to TrAdaBoost algorithm for regression. The basic learner of TrAdaBoost algorithm was changed from AdaBoost to XGBoost, which improved the calculation method of error rate when updating weight. Firstly, XGBoost was used to train the auxiliary data to get the initial calibration model, and then a small amount of data was collected from the target location of FDR, and the improved TrAdaBoost algorithm was used to calibrate the initial calibration model, so that the accurate FDR calibration model can be obtained. The data of 10 different regional sites were trained as auxiliary data to obtain the initial calibration model. For the six sites in Shenyang, the target sites were used respectively. Totally 80% of the data were used as the source domain data for model correction, and the remaining 20% were used for testing. The results showed that the average preparation rate using the calibration method was 99.1%, which indicated that the automatic calibration model using migration learning was effective and accurate. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李鴻儒,于唯楚,王振營(yíng).基于遷移學(xué)習(xí)的FDR土壤水分傳感器自動(dòng)標(biāo)定模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(2):213-220. LI Hongru, YU Weichu, WANG Zhenying. Automatic Calibration Model of FDR Soil Moisture Based on Transfer Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):213-220.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-05-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-02-10
  • 出版日期:
文章二維碼