亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)的無人機(jī)土地覆蓋圖像分割方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0600200)、北京市科技計(jì)劃項(xiàng)目(Z171100001417005)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2015ZCQ-XX)


Deep Learning Based Unmanned Aerial Vehicle Landcover Image Segmentation Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    編制土地覆蓋圖需要包含精準(zhǔn)類別劃分的土地覆蓋數(shù)據(jù),傳統(tǒng)獲取方法成本高、工程量大,且效果不佳。提出一種面向無人機(jī)航拍圖像的語義分割方法,用于分割不同類型的土地區(qū)域并分類,從而獲取土地覆蓋數(shù)據(jù)。首先,按照最新國家標(biāo)準(zhǔn),對(duì)包含多種土地利用類型的航拍圖像進(jìn)行像素級(jí)標(biāo)注,建立無人機(jī)高分辨率復(fù)雜土地覆蓋圖像數(shù)據(jù)集。然后,在語義分割模型DeepLabV3+的基礎(chǔ)上進(jìn)行改進(jìn),主要包括:將原始主干網(wǎng)絡(luò)Xception+替換為深度殘差網(wǎng)絡(luò)ResNet+;引入聯(lián)合上采樣模塊,增強(qiáng)編碼器的信息傳遞能力;調(diào)整擴(kuò)張卷積空間金字塔池化模塊的擴(kuò)張率,并移除該模塊的全局池化連接;改進(jìn)解碼器,使其融合更多淺層特征。最后在本文數(shù)據(jù)集上訓(xùn)練和測(cè)試模型。實(shí)驗(yàn)結(jié)果表明,本文提出的方法在測(cè)試集上像素準(zhǔn)確率和平均交并比分別為95.06%和81.22%,相比原始模型分別提升了14.55個(gè)百分點(diǎn)和2549個(gè)百分點(diǎn),并且優(yōu)于常用的語義分割模型FCN-8S和PSPNet模型。該方法能夠得到精度更高的土地覆蓋數(shù)據(jù),滿足編制精細(xì)土地覆蓋圖的需要。

    Abstract:

    Compilation of landcover maps needs high qualified landcover data with precise classification. Traditional techniques to obtain these have the problem of high cost, heavy workload and unsatisfied results. To this end, a semantic segmentation method was proposed for unmanned aerial vehicle (UAV) images, which was used to segment and classify different types of land areas to obtain landcover data. Firstly, the UAV images were annotated which contained various land use types at pixel level according to the latest national standards, and the highresolution complex landcover image data set of UAV was established. Then, several significant improvements based on original design of semantic segmentation model DeepLabV3+ were made, including replacing the original backbone network Xception+ with the deep residual network ResNet+; adding joint upsampling unit after backbone network to enhance the encoder’s capability of information transfer and conduct preliminary upsampling; adjusting dilated rates of atrous spatial pyramid pooling (ASPP) unit to smaller ones and removing global pooling connection of the module; and improving the decoder by fusing more lowlevel features. Finally, the models were trained and tested on the UAV highresolution landcover dataset. The presented model achieved good experimental results with pixel accuracy of 95.06% and mean intersectionoverunion of 81.22% on the test set, which was 14.55 percentage points and 25.49 percentage points higher than that of the original DeepLabV3+ model respectively. The proposed method was also superior to the commonly used semantic segmentation methods FCN-8S (pixel accuracy was 32.39%, mean intersectionoverunion was 8.39%) and PSPNet (pixel accuracy was 87.50%, mean intersectionoverunion was 50.75%). The results showed that the proposed method can obtain more accurate landcover data and meet the needs of compiling fine landcover maps. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉文萍,趙磊,周焱,宗世祥,駱有慶.基于深度學(xué)習(xí)的無人機(jī)土地覆蓋圖像分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(2):221-229. LIU Wenping, ZHAO Lei, ZHOU Yan, ZONG Shixiang, LUO Youqing. Deep Learning Based Unmanned Aerial Vehicle Landcover Image Segmentation Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):221-229.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-02-10
  • 出版日期:
文章二維碼