亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

機器人智能化吊裝技術(shù)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(51575219)


Investigation on Intelligent Lifting Technology of Robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    鑒于OpenPose進行肢體識別復(fù)雜度較高,提出基于TfPose完成人體骨架提取,并采用神經(jīng)網(wǎng)絡(luò)集成學習方法對吊裝指令肢體信號進行識別,完成智能化吊裝操作。首先,采用D-H法對吊裝機器人進行正運動學分析,確定卷揚機構(gòu)工作空間范圍,并使用共形幾何代數(shù)方法求解其逆運動學,完成吊裝機器人從當前位置運動到目標位置的數(shù)學建模;然后,基于TfPose獲取人體骨架向量和RGB骨架圖,以BP神經(jīng)網(wǎng)絡(luò)和InceptionV3網(wǎng)絡(luò)為基分類器,采用神經(jīng)網(wǎng)絡(luò)集成學習方法確定最優(yōu)化權(quán)重,完成吊裝指令肢體信號識別;最后,將識別的吊裝指令肢體信號通過UDP通信傳送給吊裝機器人控制模塊,以完成吊裝操作。實驗結(jié)果表明,該方法平均肢體識別精度達0977,提高了吊裝效率。

    Abstract:

    In view of the high complexity of limb recognition in OpenPose, it was proposed to complete the human skeleton extraction based on TfPose, and the neural network integrated learning method was used to perform limb recognition on the robot lifting instructions to complete the intelligent lifting operation. Firstly, the D-H method was used to perform the forward kinematics analysis of the hoisting robot to determine the working space range of the hoisting mechanism, and the inverse kinematics was solved by the conformal geometric algebra method. The hoisting robot was mathematically modeled from the current position to the target position; then it was obtained based on TfPose. The human skeleton vector and RGB skeleton map were based on BP neural network and InceptionV3 network. The neural network integrated learning method was used to determine the optimal weight to complete the hoisting signal identification. Finally, the identified hoisting command limb signal was transmitted to the hoisting robot through UDP communication. The module was controlled to complete the lifting operation. The experimental results showed that the average limb recognition accuracy of the method was 0977, which solved the large cargo lifting occasions such as ports, docks and mines, and greatly improved the hoisting and loading efficiency.

    參考文獻
    相似文獻
    引證文獻
引用本文

倪濤,鄒少元,孔維天,黃玲濤,張紅彥,舒禮志.機器人智能化吊裝技術(shù)研究[J].農(nóng)業(yè)機械學報,2020,51(2):402-409. NI Tao, ZOU Shaoyuan, KONG Weitian, HUANG Lingtao, ZHANG Hongyan, SHU Lizhi. Investigation on Intelligent Lifting Technology of Robot[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2):402-409.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-02-10
  • 出版日期:
文章二維碼