亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于機(jī)器視覺的甘蔗莖節(jié)特征提取與識
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


and Features Extraction of Sugarcane Nodes Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)含有蔗芽的有效蔗種片段機(jī)器智能切斷,引入機(jī)器視覺技術(shù)識別甘蔗莖節(jié)。以甘蔗圖像HSV顏色空間的S分量經(jīng)閾值分割、數(shù)學(xué)形態(tài)濾波處理作為模板,和H分量經(jīng)閾值分割的反圖像進(jìn)行與運(yùn)算得到合成圖;將合成圖劃分為64個列塊區(qū)域,提取質(zhì)心比、粗度比和白點比等7個特征指標(biāo),再用支持向量機(jī)分類識別莖節(jié)與節(jié)間列塊,得到莖節(jié)與節(jié)間的平均識別率為93.359%;對支持向量機(jī)分類出的莖節(jié)列塊進(jìn)行聚類分析,得到莖節(jié)數(shù)與位置的平均識別率分別為

    Abstract:

    94.118%、91.522%。To achieve machine intelligence cutting of effective sugarcane kinds of fragments with sugarcane bud,machine vision was introduced to identify sugarcane nodes. Through acquiring the S component of HSV color space by threshold, mathematical morphology filtering as template and the anti-phase image of the H-component by threshold was added to get synthesized image. Synthetic image was divided into 64 regions and obtained seven characteristic indicators, such as centroid ratio, roughness ratio and white point ratio, and so on. Then support vector machine was introduced to identify sugarcane nodes and sugarcane internodes. The average recognition rate of sugarcane nodes between internodes was 93.359%. Clustering analysis was introduced to identify sugarcane nodes blocks which were got by support vector machine (SVM) classification. The average recognition rates of the sugarcane numbers and the sugarcane nodes position were 94.118% and 91.522% respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陸尚平,文友先,葛維,彭輝.基于機(jī)器視覺的甘蔗莖節(jié)特征提取與識[J].農(nóng)業(yè)機(jī)械學(xué)報,2010,41(10):190-194. and Features Extraction of Sugarcane Nodes Based on Machine Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,41(10):190-194.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期:
  • 出版日期:
文章二維碼