亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)人工神經(jīng)網(wǎng)絡(luò)的植物葉面積測(cè)定
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

林業(yè)公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(200904003-1)


Improved Artificial Neural Network for Determination of Plant Leaf Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    葉面積作為植物光合作用的重要指標(biāo),是研究作物及林木生產(chǎn)力的基礎(chǔ)。采用L-M算法和貝葉斯規(guī)則相結(jié)合的網(wǎng)絡(luò)訓(xùn)練模式,以毛竹葉面積為研究對(duì)象,綜合優(yōu)化其人工神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),構(gòu)建最優(yōu)的葉面積預(yù)測(cè)模型。研究結(jié)果顯示,模型的最佳預(yù)測(cè)變量為葉片寬度和葉片長(zhǎng)度變量組合,而增加葉片形狀指數(shù)未提高葉面積預(yù)測(cè)模型精度;所建神經(jīng)網(wǎng)絡(luò)模型性能好、預(yù)測(cè)精度高,決定系數(shù)達(dá)0.992,平均相對(duì)預(yù)測(cè)誤差為4.28%,可以準(zhǔn)確估測(cè)毛竹葉面積。

    Abstract:

    Leaf area is an essential indicator of photosynthesis for the study of crop and forest productivity. The Levenberg-Marquardt back-propagation optimization algorithm was coupled with Bayesian regulation to train the artificial neural network (ANN), and the predictive model was developed to determinate rapidly and accurately Moso bamboo leaf area. The results showed that the best input variables were the combination of leaf width and leaf length for ANN model, whereas the leaf shape index did not significantly affect the variability of leaf area. The optimization ANN model possessed with excellent performance and predictable accuracy, with the high determination coefficient of 0.992 and mean relative prediction error of 4.28%. The ANN model would be allowed for estimating accuracy the leaf area of Moso bamboo.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭孝玉,孫玉軍,王軼夫,林靜媛.基于改進(jìn)人工神經(jīng)網(wǎng)絡(luò)的植物葉面積測(cè)定[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(2):200-204,199. Guo Xiaoyu, Sun Yujun, Wang Yifu, Lin Jingyuan. Improved Artificial Neural Network for Determination of Plant Leaf Area[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(2):200-204,199.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-02-04
  • 出版日期:
文章二維碼