亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于MC—UVE的土壤堿解氮和速效鉀近紅外光譜檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(41073060);江西省科技支撐計劃資助項目(2010EHB02000、2009AE01603)


Near-infrared Spectroscopy Determination of Soil Available N and Available K Based on MC—UVE Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應(yīng)用可見/短波近紅外光譜分析測量土壤堿解氮和速效鉀含量。為了提高該分析方法的預(yù)測精度,消除無信息建模變量對模型穩(wěn)定性的影響,原始光譜平滑后采用蒙特卡羅無信息變量消除方法(MC—UVE)對土壤堿解氮和速效鉀的建模變量進(jìn)行篩選,應(yīng)用偏最小二乘方法(PLS)建立校正模型。對于堿解氮模型,采用MC—UVE PLS方法,建模變量減少為210,相關(guān)系數(shù)和預(yù)測均方差分別為0.84和17.1mg/kg。對于速效鉀的預(yù)測模型,采用MC—UVE方法后,建模變量減少為150,模型的預(yù)測相關(guān)系數(shù)為0.76,預(yù)測均方根誤差為15.4mg/kg。

    Abstract:

    Visible/near-infrared spectroscopy (Vis/NIRS) was investigated for determination of soil properties, namely, available nitrogen (N) and available potassium (K). In order to improve the predictive precision and eliminate the influence of uninformative variables for model robustness, Monte Carlo uninformative variables elimination (MC—UVE) methods were proposed for variable selection in available N and available K NIR spectral modeling. Partial least squares (PLS) models analysis was implemented for calibration models. The modeling variable number was reduced to 210 from 751 for available N calibration model and 150 for available K calibration model. The performance of the model was evaluated by the correlation coefficient (R), RMSEP. The optimal MC—UVE PLS models were achieved, and R, RMSEP were 0.84, 17.1mg/kg for N and 0.76, 15.4mg/kg for K, respectively.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉雪梅,柳建設(shè).基于MC—UVE的土壤堿解氮和速效鉀近紅外光譜檢測[J].農(nóng)業(yè)機械學(xué)報,2013,44(3):88-91,136. Liu Xuemei, Liu Jianshe. Near-infrared Spectroscopy Determination of Soil Available N and Available K Based on MC—UVE Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(3):88-91,136.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-02-25
  • 出版日期: