亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于加權(quán)支持向量數(shù)據(jù)描述的遙感圖像病害松樹識(shí)別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(61172127);安徽省教育廳重點(diǎn)科研計(jì)劃資助項(xiàng)目(KJ2010A021)


Infected Pine Recognition in Remote Sensing Images Based on Weighted Support Vector Data Description
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    利用安裝在無人機(jī)平臺(tái)上的雙光譜相機(jī)所獲取的可見光和近紅外遙感圖像,采用改進(jìn)的加權(quán)支持向量數(shù)據(jù)描述多分類算法,實(shí)現(xiàn)病害松樹識(shí)別。首先根據(jù)不同內(nèi)容信息圖像的特點(diǎn),提取雙光譜相機(jī)所獲取的可見光圖像和近紅外圖像各顏色分量作為相應(yīng)像素點(diǎn)的顏色特征,再通過提取加窗圖像塊的灰度共生矩陣得到中心像素點(diǎn)的紋理特征,然后利用權(quán)重系數(shù)為每類樣本分別作加權(quán)支持向量數(shù)據(jù)描述,實(shí)現(xiàn)松樹狀態(tài)的多輸出分類識(shí)別,其中權(quán)重系數(shù)是通過建立關(guān)于訓(xùn)練樣本中心距離的權(quán)重函數(shù)所確定。與傳統(tǒng)的人工、航空和衛(wèi)星遙感識(shí)別方法不同,利用無人機(jī)平臺(tái)和雙光譜相機(jī)獲取遙感圖像,具有可操作性強(qiáng)、費(fèi)用低廉等優(yōu)勢(shì)。試驗(yàn)結(jié)果表明,相比傳統(tǒng)的支持向量機(jī)和支持向量數(shù)據(jù)描述算法,改進(jìn)的加權(quán)支持向量數(shù)據(jù)描述多分類算法更能準(zhǔn)確地進(jìn)行病害松樹識(shí)別。

    Abstract:

    An improved multi-classification algorithm of weighted support vector data description (WSVDD) was applied for the recognition of infected pine by utilizing the visible and near-infrared images acquired by the double spectrum camera fixed on the unmanned aerial vehicle (UAV) platform. Each color component for visible and near-infrared images acquired by the double spectrum camera was extracted as the color feature of the corresponding pixel on the basis of the difference of content information. Then the texture feature of the central pixel was acquired by extracting the gray level co-occurrence matrix of the adding window image block. The weight coefficient was used for the WSVDD of each kind of sample in order to realize the multi-classification and recognition of pine state. Here the weight coefficient was determined by building the weight function on the center distance of the training sample. Compared with the other methods such as manual work, aerial and satellite remote sensing, this method for acquiring the remote sensing image by using the UAV platform and the double spectrum camera was more operable, more low-cost etc. The experiment results showed that the WSVDD multi-classification algorithm could recognize the infected pine more accurately than the traditional methods of support vector machine(SVM) and support vector data description(SVDD).

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡根生,張學(xué)敏,梁棟,黃林生.基于加權(quán)支持向量數(shù)據(jù)描述的遙感圖像病害松樹識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(5):258-263,287. Hu Gensheng, Zhang Xuemin, Liang Dong, Huang Linsheng. Infected Pine Recognition in Remote Sensing Images Based on Weighted Support Vector Data Description[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(5):258-263,287.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-04-28
  • 出版日期: