亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于MSCPSO混合核SVM參數(shù)優(yōu)化的生菜品質(zhì)檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金資助項目(31101082);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目(蘇政辦發(fā)20116號)


Detection of Lettuce Quality Based on Parameters Optimization of MSCPSO Mixed Kernel SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    核函數(shù)形式的選擇與核函數(shù)參數(shù)值的大小是影響支持向量機(jī)的2個關(guān)鍵因素,傳統(tǒng)的支持向量機(jī)分類精度低、時效性差,為了獲得高精度、高時效性的支持向量機(jī),從影響支持向量機(jī)的核函數(shù)與核函數(shù)參數(shù)值2個關(guān)鍵因素著手,提出了基于變尺度混沌粒子群優(yōu)化(MSCPSO)混合核SVM參數(shù)的分類器。將此分類模型用于預(yù)測生菜葉片的生育期,以及預(yù)測3個生育期的生菜葉片氮素水平,預(yù)測精度分別達(dá)到91.51%、85.38%、82.59%和81.26%。與傳統(tǒng)的粒子群優(yōu)化混合核SVM的分類器和變尺度混沌粒子群優(yōu)化RBF_SVM分類器相比,提出的分類器模型分類精度高、時效性好。

    Abstract:

    The traditional support vector machine has two faults: low classification accuracy and poor timeliness. In order to obtain support vector machine (SVM) with high accuracy and efficiency, the parameter optimization of SVM with mixed kernels based on mutative scale chaos particle swarm optimization (MSCPSO) was presented. This model was used to predict the growth stage of lettuce leave, which was consist of seedling stage, tillering stage and mature stage, and N content levels of three growth periods respectively. The prediction accuracy achieved to 91.51%, 85.38%, 82.59% and 81.26%. Compared with the traditional particle swarm optimization mixed nuclear SVM classifier and mutative scale chaos particle swarm optimization RBF_SVM classifier, the proposed classifier model showed higher classification accuracy and timeliness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫俊,王艷,金夏明,毛罕平.基于MSCPSO混合核SVM參數(shù)優(yōu)化的生菜品質(zhì)檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2013,44(9):209-213,218. Sun Jun, Wang Yan, Jin Xiaming, Mao Hanping. Detection of Lettuce Quality Based on Parameters Optimization of MSCPSO Mixed Kernel SVM[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(9):209-213,218.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-09-11
  • 出版日期: