亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于壓縮感知理論的蘋果病害識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(61271280、61001100)和陜西省自然科學基金資助項目(2010K06-15)


Apple Disease Recognition Based on Compressive Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)自然場景下低分辨率蘋果果實病害的智能識別,提出了一種基于壓縮感知理論的蘋果病害識別方法。以輪紋病、炭疽病和新輪紋病3種常見的蘋果果實病害為研究對象,提取病斑的8個紋理特征參數(shù)組成訓練特征矩陣。利用壓縮感知理論,求解待測樣本特征向量在特征矩陣上的稀疏表示系數(shù)向量,通過對系數(shù)向量的分析實現(xiàn)待測樣本的分類。設計灰度關(guān)聯(lián)分析和支持向量機識別模型與本文方法進行識別效果對比,平均正確識別率分別為86.67%、90%和90%。實驗結(jié)果表明,基于壓縮感知理論的識別方法能夠?qū)μO果病害進行有效識別。

    Abstract:

    To intelligently recognize apple fruit diseases from low-resolution images taken in natural environment, a method based on compressive sensing was proposed. Three kinds of apple fruit diseases (apple ring rot, apple anthracnose and new apple ring rot) were investigated. Eight texture feature values were extracted to construct the training eigenmatrix. Then compressive sensing was used to approximate the sparse coefficient vector which was the sparse representation of the sample eigenvector on the training eigenmatrix. Thus the test sample was classified by analyzing the coefficients vector. Both the gray relation analysis and the support vector machine recognition models were constructed to compare with the proposed method. The recognition rates of three models were 86.67%, 90% and 90%, respectively. The experimental results showed that the recognition method based on compressive sensing could effectively recognize these three kinds of apple fruit diseases. 

    參考文獻
    相似文獻
    引證文獻
引用本文

霍迎秋,唐晶磊,尹秀珍,方勇.基于壓縮感知理論的蘋果病害識別方法[J].農(nóng)業(yè)機械學報,2013,44(10):227-232. Huo Yingqiu, Tang Jinglei, Yin Xiuzhen, Fang Yong. Apple Disease Recognition Based on Compressive Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(10):227-232.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-10-14
  • 出版日期: