亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于植物電信號(hào)的環(huán)境因子預(yù)測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2012AA101904)、江蘇省農(nóng)機(jī)三項(xiàng)工程資助項(xiàng)目(NJ2010)和江蘇省農(nóng)機(jī)局科研啟動(dòng)基金資助項(xiàng)目(06007)


Environment Factor Prediction Models Based on Plant Electrical Signals
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以采集的植物電信號(hào)為生理指標(biāo),綜合分析其時(shí)域、頻域和時(shí)頻域中的典型特征值,利用學(xué)習(xí)速度快、泛化性能好的極限學(xué)習(xí)機(jī)算法,以電信號(hào)的多個(gè)特征及環(huán)境參數(shù)作為輸入量,建立適合植物生長(zhǎng)的環(huán)境因子(溫度、濕度、光照度)預(yù)測(cè)模型。結(jié)果表明:通過(guò)對(duì)采集的碧玉葉面電信號(hào)進(jìn)行不同域的分析,得出植物電信號(hào)屬于低頻微弱信號(hào);利用極限學(xué)習(xí)機(jī)(ELM)分別對(duì)適合碧玉生長(zhǎng)的溫度、濕度及光照度3個(gè)環(huán)境因子建立預(yù)測(cè)模型,通過(guò)與傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)對(duì)比,ELM算法下的均方根誤差小于0.97,而決定系數(shù)大于0.92,訓(xùn)練所需的時(shí)間低于0.03s,驗(yàn)證了此方法的可行性,為科學(xué)指導(dǎo)溫室環(huán)境因子調(diào)控提供科學(xué)依據(jù)。

    Abstract:

    The typical characteristic values of electrical signals in plant from time domain, frequency domain and time-frequency domain were analyzed and the electrical signals in plant were to be as physiological indicators. To establish environment prediction models, typical features of electrical signals and some environmental parameters were chosen to be as input of neural network with the extreme learning machine algorithm characterized by fast learning speed and good generalization. The results showed that the plants electrical signals were the low-frequency weak signals by analysis of the electrical signals in Peperomia tetraphylla leaf on different domains, and by extreme learning machine three prediction models such as temperature, humidity and illumination were established to make plants grow well. Compared with the traditional BP neural network, the root mean square error with ELM algorithm is less than 0.97, while the coefficient of determination is more than 0.92 and each training time is less than 0.03s. This method provided the scientific basis for greenhouse environmental regulating and was verified to be feasible.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陸靜霞,於海明,陳士進(jìn),凌威龍,丁為民.基于植物電信號(hào)的環(huán)境因子預(yù)測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(11):229-233. Lu Jingxia, Yu Haiming, Chen Shijin, Ling Weilong, Ding Weimin. Environment Factor Prediction Models Based on Plant Electrical Signals[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):229-233.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-11-07
  • 出版日期:
文章二維碼