亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于稀疏表示的烤煙煙葉品質分級研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

高等學校博士學科點專項科研基金資助項目(20110146120012)和中央高校基本科研業(yè)務費專項資金資助項目(2013QC024)


Grading for Tobacco Leaf Quality Based on Sparse Representation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)煙葉自動檢測與分析,通過計算機視覺對煙葉品質進行分級。在提取煙葉圖像特征參數(shù)的基礎上,提出了一種基于稀疏表示的烤煙煙葉品質分級方法。以臨朐12種和恩施5種不同級別的煙葉圖像作為研究對象,每級煙葉取10幅圖像作為訓練樣本,對每幅煙葉圖像取顏色、形態(tài)和紋理特征值。利用訓練樣本的特征值組成稀疏表示方法的數(shù)據(jù)字典,對每個測試樣本計算其在數(shù)據(jù)字典上的投影,利用最小殘差項確定其品質分級。實驗結果與基追蹤法(BP)、神經(jīng)網(wǎng)絡方法、SVM方法和模糊處理方法實驗結果相比較,訓練集樣本識別率為100%,綜合識別率達95.7%,取得了比較好的分類效果。

    Abstract:

    A quality grading method based on sparse representation was proposed to identify the varieties of tobacco quality. The images of 17 different qualities of tobacco were taken as objects. Ten images of each variety were selected randomly as training samples. The colors, morphological and textural characters of these images were extracted for making up the dictionary of sparse representation. The projection of the test image on the dictionary was calculated. The minimum projection error was regarded as the certain kind of tobacco. The result of the proposed method was compared with basic pursuit algorithm, neural network, SVM and fuzzy processing. The identification accuracy of training samples was 100% and the overall one was 95.7%.

    參考文獻
    相似文獻
    引證文獻
引用本文

向金海,楊 申,樊 恒,章 英,翟瑞芳,彭 輝.基于稀疏表示的烤煙煙葉品質分級研究[J].農(nóng)業(yè)機械學報,2013,44(11):287-292. Xiang Jinhai, Yang Shen, Fan Heng, Zhang Ying, Zhai Ruifang, Peng Hui. Grading for Tobacco Leaf Quality Based on Sparse Representation[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):287-292.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2013-11-07
  • 出版日期:
文章二維碼