亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

無線傳感器網絡三維定位交叉粒子群算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家高技術研究發(fā)展計劃(863計劃)資助項目(2011AA100704)


Three-dimensional Localization Method of Agriculture Wireless Sensor Networks Based on Crossover Particle Swarm Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對標準粒子群算法進化后期收斂速度慢、易陷入局部極小點、早熟收斂等問題,提出一種基于交叉粒子群的農業(yè)無線傳感器網絡三維定位算法。該方法主要包括匯聚節(jié)點選取、測量距離修正、節(jié)點定位3個階段,通過借鑒遺傳算法交叉操作的思想,增加粒子的多樣性,減小測距誤差、錨節(jié)點數(shù)量對定位結果的影響,有效提高定位算法全局搜索能力。仿真結果表明,該方法的穩(wěn)定性和定位精度均優(yōu)于標準粒子群算法。在測距誤差和錨節(jié)點數(shù)量相同的條件下,與混合蛙跳定位算法進行性能比較,兩種算法的最大定位誤差分別為1.3378m、1.7473m,最小定位誤差分別為0.2583m、0.5615m,平均定位誤差分別為0.6512m、1.0447m。

    Abstract:

    For the standard particle swarm optimization algorithm is easy to appear slow convergence speed, emerge premature convergence and fall into local minimum point in the later evolution, a kind of localization algorithm based on cross particle swarm optimization for wireless sensor networks was presented to solve these problems. The approach mainly included three stages: sink node selection, measure distances amendment and unknown sensor node localization. By referring to the crossover operation of genetic algorithm idea, cross particle swarm optimization algorithm could increase the diversity of particles and reduce the distance measure error and the influence of anchor node number on localization result. The simulation experiment result showed that the stability and localization accuracy of the method proposed are better than those of the standard particle swarm optimization algorithm. Under the condition of same measure error and the equal number of anchor nodes, the new method was compared with the shuffled frog leaping algorithm. And the compared results are as follows: the maximum of localization errors are 1.3378m and 1.7473m, respectively; the minimum of localization errors are 0.2583 m and 0.5615m, respectively; the average localization errors are 0.6512m and 10447m, respectively. Results indicate that the method proposed is suitable for agriculture wireless sensor network localization.

    參考文獻
    相似文獻
    引證文獻
引用本文

王 俊,李樹強,劉 剛.無線傳感器網絡三維定位交叉粒子群算法[J].農業(yè)機械學報,2014,45(5):233-238. Wang Jun, Li Shuqiang, Liu Gang. Three-dimensional Localization Method of Agriculture Wireless Sensor Networks Based on Crossover Particle Swarm Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(5):233-238.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2013-06-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-05-10
  • 出版日期: 2014-05-10