亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LBV變換與小波變換的OLI圖像融合方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(41361044、61162025)和西藏民族學(xué)院青年學(xué)人培育計(jì)劃資助項(xiàng)目(13myQP09)


Fusion of OLI Image Based on LBV Transform and Wavelet Transform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    以陜西省榆陽區(qū)2013年6月9日的Landsat 8 OLI圖像為基礎(chǔ)數(shù)據(jù)源,對(duì)比分析LBV Wavelet RF等5種圖像融合算法的使用效果。對(duì)圖像預(yù)處理后,分別采用HIS變換、Brovey變換、HPF變換、PCA變換和LBV Wavelet RF方法進(jìn)行融合和SVM監(jiān)督分類,然后從目視評(píng)價(jià)和定量評(píng)價(jià)兩方面對(duì)比分析各種融合算法的使用效果。在目視評(píng)價(jià)方面,判讀融合前、后9種地類光譜特征的一致性;融合后圖像是否具有全色波段圖像的空間結(jié)構(gòu)特征,是否存在細(xì)節(jié)模糊。在定量評(píng)價(jià)方面,采用灰度均值差、灰度均方根差評(píng)價(jià)融合后圖像對(duì)多光譜信息的保持性能;采用相關(guān)系數(shù)均值、相關(guān)系數(shù)均方根差評(píng)價(jià)融合后圖像對(duì)高空間分辨率信息的融入度;采用總體分類精度、Kappa系數(shù)評(píng)價(jià)融合前、后SVM監(jiān)督分類精度差異。結(jié)果表明LBV Wavelet RF方法能夠使融合后圖像在保持原多光譜圖像光譜信息的同時(shí),增強(qiáng)紋理結(jié)構(gòu)特征,提高對(duì)細(xì)小地物的辨識(shí)能力;融合后圖像SVM監(jiān)督分類的總體分類精度和Kappa系數(shù)分別為84.01 %和0.787,較原多光譜圖像分別提高13.45%和15.91%。

    Abstract:

    The aim of this study is to seek out the most suitable image fusion algorithm for OLI image of Landsat 8 satellite acquired in June 9, 2010, taking Yuyang country in Shaanxi Province as study area. Five kinds of image fusion algorithms have been employed, which are Brovey transform, High pass filter transform, HIS transform, PCA transform and LBV wavelet RF. The effectiveness of the five fusion algorithms has been evaluated based on spectral fidelity, high spatial frequency information gain, and supervised classification accuracy. Firstly, by visual evaluation this study evaluated whether fused images preserved spectral information of original multispectral image well, and whether retained texture and edges information of panchromatic image and avoided texture blurring. Secondly,by quantitative evaluation, spectrum character of fused images was analyzed by using gray average difference and gray root mean square error. Integration of the high frequency detail information of panchromatic images to fused images was analyzed by using correlation coefficient average and correlation root mean square error. The supervised classification accuracy of fused images was evaluated by using Kappa coefficient and overall classification accuracy. Results showed that LBV wavelet RF was the best method in retaining spectral information of original multispectral image, and not causing spectral distortion, as well as achieving the highest SVM supervised classification accuracy. Overall classification accuracy and Kappa coefficient of fused image using this method were 84.01% and 0.787,achieved noticeable growth of 13.45% and 15.91% than original multispectral image. The proposed OLI image fusion algorithm could provide far more detailed topographic information compared with original multispectral dates and better service for improving visual interpretation and supervised classification accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉 煒,王聰華,楊曉波,雒偉群.基于LBV變換與小波變換的OLI圖像融合方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(11):264-271. Liu Wei, Wang Conghua, Yang Xiaobo, Luo Weiqun. Fusion of OLI Image Based on LBV Transform and Wavelet Transform[J]. Transactions of the Chinese Society for Agricultural Machinery,2014,45(11):264-271.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-05-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2014-11-10
  • 出版日期: