亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

順序同化不同時空分辨率LAI的冬小麥估產對比研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金資助項目(41371326)和“十二五”國家科技支撐計劃資助項目(2012BAH29B02)


Comparison of Winter Wheat Yield Estimation by Sequential Assimilation of Different Spatio temporal Resolution Remotely Sensed LAI Datasets
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    選擇PyWOFOST模型為動態(tài)模型,以葉面積指數(LAI)為狀態(tài)變量,遙感LAI為觀測值,采用集合卡爾曼濾波(EnKF)同化算法,研發(fā)了一種遙感LAI與作物模型同化的區(qū)域冬小麥產量估測系統。為消除云的污染,采用Savitzky-Golay (S-G)濾波算法重構時間序列MODIS LAI;通過構建地面觀測LAI與3個關鍵物候期Landsat TM植被指數回歸統計模型,獲得區(qū)域TM LAI;通過融合3個關鍵物候期的TM LAI與時間序列S-G MODIS LAI,生成尺度轉換LAI。對比分析3種不同時空分辨率的遙感LAI的同化精度,研究結果表明,同化尺度轉換LAI獲得了最高的同化精度,與官方縣域統計產量相比, 在潛在模式下,決定系數由同化前的0.24提高到0.47,均方根誤差由602kg/hm2下降到478kg/hm2。結果表明,遙感觀測與作物模型的尺度調整對提高冬小麥同化模型精度具有重要作用,遙感LAI與作物模型的EnKF同化方法是一種有效的區(qū)域作物產量估測方法。

    Abstract:

    Data assimilation method combines with remotely sensed data and crop growth model has become an important hotspot in crop yield forecasting. PyWOFOST model and remotely sensed LAI were respectively selected as the crop growth model and observations to construct a regional winter wheat yield forecasting scheme with EnKF algorithm. To eliminate cloud contamination, a Savitzky-Golay (S-G) filtering algorithm was applied to the MODIS LAI products to obtain filtered LAIs. Regression models between field-measured LAI and Landsat TM vegetation indices were established and multi-temporal TM LAIs was derived. The TM LAI with time series of MODIS LAI was integrated to generate scale-adjusted LAI. Compared the assimilation accuracy using these three different spatio-temporal resolution remotely sensed data, validation results demonstrated that assimilating the scale-adjusted LAI achieved the best prediction accuracy, in potential mode, the determination coefficient (R2) increased from 0.24 which without assimilation to 0.47 and RMSE decreased from 602kg/hm2 to 478kg/hm2 at county level compared to the official statistical yield data. Our results indicated that the scale adjustment between remotely sensed observation and crop model greatly improved the accuracy of winter wheat yield forecasting. The assimilation of remotely sensed data into crop growth model with EnKF can provide a reliable approach for regional crop yield estimation.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃健熙,李昕璐,劉帝佑,馬鴻元,田麗燕,蘇 偉.順序同化不同時空分辨率LAI的冬小麥估產對比研究[J].農業(yè)機械學報,2015,46(1):240-248. Huang Jianxi, Li Xinlu, Liu Diyou, Ma Hongyuan, Tian Liyan, Su Wei. Comparison of Winter Wheat Yield Estimation by Sequential Assimilation of Different Spatio temporal Resolution Remotely Sensed LAI Datasets[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(1):240-248.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2014-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-01-10
  • 出版日期: 2015-01-10