亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于擴(kuò)展Kalman粒子濾波的汽車(chē)行駛狀態(tài)和參數(shù)估計(jì)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家留學(xué)基金資助項(xiàng)目(留金發(fā)[2013]3018號(hào))


Vehicle State and Parameter Estimation under Driving Situation Based on Extended Kalman Particle Filter Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    汽車(chē)行駛過(guò)程中的某些參數(shù)通常需要通過(guò)實(shí)驗(yàn)室內(nèi)較為昂貴的試驗(yàn)設(shè)備獲得,測(cè)量成本較高,而獲取車(chē)輛的行駛狀態(tài)和參數(shù)對(duì)于車(chē)輛行駛過(guò)程中的控制有著重要的意義。通常情況下,需要將車(chē)輛行駛狀態(tài)變量和側(cè)偏剛度等參數(shù)進(jìn)行聯(lián)合估計(jì)。這些參數(shù)將會(huì)被用于車(chē)輛動(dòng)力學(xué)模型來(lái)分析汽車(chē)的操縱狀態(tài)。本文建立了包含定常統(tǒng)計(jì)特性噪聲的汽車(chē)動(dòng)力學(xué)模型,利用龍格—庫(kù)塔方法模擬模型,引入擴(kuò)展Kalman濾波技術(shù),生成粒子濾波重要性概率密度函數(shù),對(duì)狀態(tài)和參數(shù)同時(shí)進(jìn)行估計(jì),仿真結(jié)果表明,擴(kuò)展Kalman粒子濾波技術(shù)改善了標(biāo)準(zhǔn)粒子濾波算法的精度,驗(yàn)證了算法的有效性。

    Abstract:

    Individual parameters of vehicle dynamic systems were traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure. These parameters were then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior and the cost of measurement was high. At the same time,acquiring the vehicle’s driving status and parameters had important significance for the process controlling of the vehicle. Normally, the status and parameter of the test vehicle needed to be estimated together, which were then transferred to vehicle models and used at a design stage to simulate the vehicle handling behavior. A vehicle dynamics system containing constant noise and non-linear model was established,Runge—Kutta method was used to simulate the model. The extended Kalman filter algorithm was used as the importance density function to update particles in particle filter, with which the local state estimated values and parameters can be calculated. The simulation results showed that the proposed algorithm improved the accuracy of standard particle filter.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

包瑞新,賈敏,Edoardo Sabbioni,于會(huì)龍.基于擴(kuò)展Kalman粒子濾波的汽車(chē)行駛狀態(tài)和參數(shù)估計(jì)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):301-306. Bao Ruixin, Jia Min, Edoardo Sabbioni, Yu Huilong. Vehicle State and Parameter Estimation under Driving Situation Based on Extended Kalman Particle Filter Method[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):301-306.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-08-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-02-10
  • 出版日期: 2015-02-10
文章二維碼