亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜圖像的桑葉農(nóng)藥殘留種類(lèi)鑒別研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31471413)、江蘇高校優(yōu)勢(shì)學(xué)科建設(shè)工程資助項(xiàng)目(蘇政辦發(fā)2011 6號(hào))、江蘇大學(xué)現(xiàn)代農(nóng)業(yè)裝備與技術(shù)重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(NZ201306)、中國(guó)博士后科學(xué)基金資助項(xiàng)目(2014M561594)和江蘇省博士后科研資助計(jì)劃資助項(xiàng)目(1401175C)


Identification of Pesticide Residues on Mulberry Leaves Based on Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    研究了一種快速、精確、無(wú)損檢測(cè)桑葉農(nóng)藥殘留的方法。以不含農(nóng)藥殘留的桑葉、含有敵敵畏殘留的桑葉、含有毒死蜱殘留的桑葉、含有乙酰甲胺磷殘留的桑葉、含有樂(lè)果殘留的桑葉和含有辛硫磷殘留的桑葉為實(shí)驗(yàn)對(duì)象,利用高光譜成像儀獲取390~1050nm范圍內(nèi)的桑葉高光譜圖像。利用ENVI軟件確定葉片的感興趣區(qū)域,并采用連續(xù)投影算法(SPA)優(yōu)選出10個(gè)特征波長(zhǎng)(452.51、469.88、517.28、539.85、578.92、643.72、727.24、758.34、785.67、819.67nm)。利用基于徑向基內(nèi)核(RBF)的支持向量機(jī)(SVM)和10折交叉驗(yàn)證的方法建立桑葉農(nóng)殘檢測(cè)模型,并討論了3種參數(shù)尋優(yōu)算法(網(wǎng)格搜索、遺傳算法和粒子群算法)對(duì)模型性能的影響,發(fā)現(xiàn)采用網(wǎng)格搜索的SVM模型的性能最優(yōu),其交叉驗(yàn)證正確率為63.89%,預(yù)測(cè)正確率為78.33%。為了進(jìn)一步提升模型的分類(lèi)性能,將自適應(yīng)提升算法(Adaboost)引入到SVM建模方法,基于特征波長(zhǎng)下的光譜數(shù)據(jù),對(duì)桑葉是否含有農(nóng)藥殘留及農(nóng)藥殘留品種進(jìn)行分類(lèi)建模。結(jié)果表明,Ada—SVM模型的預(yù)測(cè)準(zhǔn)確率達(dá)到97.78%,較傳統(tǒng)SVM模型的準(zhǔn)確率提高了19.45個(gè)百分點(diǎn)??梢?jiàn),利用高光譜圖像技術(shù)結(jié)合Ada—SVM算法能夠較準(zhǔn)確地鑒別桑葉農(nóng)藥殘留。

    Abstract:

    A non-destructive testing method was studied to rapidly and accurately detect pesticide residues on mulberry leaves. Six groups of mulberry leaves were chosen as experimental samples, which contained pesticide residues of dichlorvos, chlorpyrifos, acephate, dimethoate and phoxim as the first to fifth groups, respectively, and the sixth group without pesticide residues was taken as control. Hyperspectral images of samples in 390~1.050nm were acquired by hyperspectral imaging devices. The region of interest from hyperspectral image was selected, and ten characteristic wavelengths, which were 452.51, 469.88, 517.28, 539.85, 578.92, 643.72, 727.24, 758.34, 785.67 and 819.67nm, were selected by the successive projections algorithm (SPA). Based on RBF kernel function of SVM and 10 fold crossvalidation methods, the detection models of pesticide residues on mulberry leaves were established. The impacts of three parameter optimization algorithms (grid search, genetic algorithm and particle swarm optimization) on the model performance were discussed. The results showed that performance of SVM model by using grid search was the optimal one, and its cross-validation accuracy was 63.89% and forecast accuracy was 78.33%. In order to further enhance the classification performance of the model, the adaptive algorithm (Adaboost) was introduced into the SVM model, and Ada—SVM algorithm was used to build classification model, which can detect pesticide residues on mulberry leaves and identify the kinds of pesticide residues. The results showed that the prediction accuracy of Ada—SVM model reached 97.78%, which was increased by 19.45% compared with the original SVM model. Therefore, hyperspectral imaging technology combined with Ada—SVM algorithm can accurately identify the pesticide residues on mulberry leaves. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫俊,張梅霞,毛罕平,李正明,楊寧,武小紅.基于高光譜圖像的桑葉農(nóng)藥殘留種類(lèi)鑒別研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(6):251-256. Sun Jun, Zhang Meixia, Mao Hanping, Li Zhengming, Yang Ning, Wu Xiaohong. Identification of Pesticide Residues on Mulberry Leaves Based on Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(6):251-256.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-10-23
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2015-06-10
  • 出版日期: 2015-06-10