亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜與電子鼻融合的番石榴機械損傷識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金資助項目(CARS-33-13)、廣東省高等學校優(yōu)秀青年教師培養(yǎng)計劃資助項目(Y92014025)和廣州市珠江科技新星專項資助項目(2014J2200070)


Identification for Guava Mechanical Damage Based on Combined Hyperspectrometer and Electronic Nose
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種基于高光譜與電子鼻融合的水果機械損傷識別方法。分別采用高光譜儀與電子鼻對無損傷、輕度機械損傷和重度機械損傷的番石榴進行采樣,提取特征信息后,運用主成分分析(PCA)、線性判別分析(LDA)、歐氏距離分析(ED)和模糊C均值聚類(FCM)對高光譜儀、電子鼻以及高光譜與電子鼻融合3種識別方法的識別效果進行了對比。PCA和LDA的分析結(jié)果表明,高光譜與電子鼻識別番石榴機械損傷是可行的,但單獨采用這兩種識別方法均無法對番石榴機械損傷程度進行分級。采用高光譜與電子鼻融合方法,結(jié)合LDA分析可以較好地識別番石榴機械損傷程度,比單一識別方法具有更好的識別效果。此外,LDA比PCA對番石榴機械損傷識別效果更佳。根據(jù)PCA、LDA和ED分析結(jié)果可以推測多源信息融合的分類識別方法既可獲取更多的樣本信息,提高相同樣本之間的聚類性,又可較多地保持單一分類識別方法得到的不同樣本之間的最大距離。根據(jù)FCM分析結(jié)果,高光譜識別、電子鼻識別和高光譜與電子鼻融合識別3種方法對番石榴機械損傷識別的正確率分別為89.74%、82.05%和97.44%,驗證了多源信息融合方法對提高水果機械損傷識別效果的可行性。

    Abstract:

    This paper proposed a method to identify the mechanical damage of fruit based on the combined hyper-spectrometer and electronic nose. We used hyper-spectrometer and electronic nose on no damage guava, lightlevel mechanical damage guava and heavylevel mechanical damage guava samples, respectively. After extracting the feature information, the principal component analysis (PCA), linear discriminant analysis (LDA), Euclidean distance (ED) analysis and fuzzy Cmean cluster were used to compare the classification effect of three identification methods (hyperspectral identification, electronic nose identification, combined hyperspectrometer and electronic nose identification) for guava mechanical damage. The results of PCA and LDA show that the hyper-spectrometer and electronic nose can identify the mechanical damage of guava, but both of the single method cannot identify the mechanical damage level of guava. When using the method of combined hyper-spectrometer and electronic nose identification, LDA result shows that it can classify the mechanical damage level of guava effectively. The identification effect of LDA for guava mechanical damage was better than that of PCA. According to PCA, LDA and ED results, we can also infer that the multisource information fusion can not only gain more sample information which was useful for improving classification effect, but also keep the maximum distance of each group as large as possible. According to fuzzy C-mean cluster results, the identification accuracy of guava mechanical damage based on hyperspectral identification, electronic nose identification and combined hyper-spectrometer and electronic nose identification were 89.74%, 82.05% and 97.44%, respectively. This paper proved the feasibility of using multi-source information fusion to improve the identification effect of fruit mechanical damage.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐 賽,陸華忠,周志艷,呂恩利,姜焰鳴.基于高光譜與電子鼻融合的番石榴機械損傷識別方法[J].農(nóng)業(yè)機械學報,2015,46(7):214-219. Xu Sai, Lu Huazhong, Zhou Zhiyan, Lü Enli, Jiang Yanming. Identification for Guava Mechanical Damage Based on Combined Hyperspectrometer and Electronic Nose[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):214-219.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-04-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-07-10
  • 出版日期: 2015-07-10
文章二維碼