亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于視覺顯著度的射線圖像微小缺陷提取方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

重慶市基礎(chǔ)與前沿研究計(jì)劃基金資助項(xiàng)目(cstc2013jcyjA70009)和國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(51075419)


Detection of Tiny Detect in Radiographic Images Based on Visual Saliency
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)射線圖像復(fù)雜大背景下微小目標(biāo)檢測(cè),研究強(qiáng)噪聲、大灰度梯度下微小缺陷的分割方法。提出面向射線圖像的視覺顯著度模型,模擬人眼視覺注意機(jī)制,采用線掃描及自適應(yīng)中央-周邊差策略,以視覺顯著度為尺度,通過(guò)特征圖計(jì)算與融合、顯著圖獲取等算法,從射線圖像復(fù)雜背景中分割出注意區(qū)域;進(jìn)一步通過(guò)顯著度競(jìng)爭(zhēng)標(biāo)記排序各注意區(qū)域,并根據(jù)顯著度閾值識(shí)別可疑缺陷區(qū)域,由此減少圖像數(shù)據(jù)處理量,排除射線圖像其他部分的干擾。提出以顯著圖上可疑區(qū)域的注意焦點(diǎn)為種子點(diǎn),基于各點(diǎn)顯著度的區(qū)域生長(zhǎng)分割方法,實(shí)現(xiàn)了可疑區(qū)域圖像中微小缺陷目標(biāo)的準(zhǔn)確提取。在復(fù)雜大背景X射線圖像的實(shí)驗(yàn)中,準(zhǔn)確提取出含有未知缺陷目標(biāo)的區(qū)域,對(duì)微小目標(biāo)的分割取得了較好效果,準(zhǔn)確率達(dá)到961%,比傳統(tǒng)方法高8%以上,證明了所提方法的有效性和適應(yīng)性。

    Abstract:

    To achieve detection of tiny defect in radiographic images with complex background, the segmentation method of tiny defects was studied under the conditions of strong noise and large gray gradient background. The visual attention model for radiographic testing image was proposed, and its realization method was analyzed in detail. The human visual attention mechanism was simulated. The line scanning strategy and selfadapting centralperipheral difference strategy was adopted. Based on the vision saliency, the feature map and the saliency map were achieved, and visual attention region was segmented from radiographic images with complex background. Each visual attention region was marked and ordered with visual saliency competition. According to the saliency threshold, the suspicious region was identified. So the image data to be processed was reduced and the interference was discharged from other parts of radiographic testing image. Then attention focuses of the suspicious region was used as the seed point. Based on region growing and visual saliency, a segmentation method for tiny target was introduced to accurately extract tiny defects in suspicious region image. In the experiment about complex radiographic testing image with more tiny target objects, each area containing unknown defect was accurately extracted. Segmentation for tiny target achieved good results. The accuracy rate was 96.1%,and it was 8% higher than that of the traditional method. The results prove the effectiveness and adaptability of the proposed method.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余永維,殷國(guó)富,殷 鷹,杜柳青.基于視覺顯著度的射線圖像微小缺陷提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(7):365-370. Yu Yongwei, Yin Guofu, Yin Ying, Du Liuqing. Detection of Tiny Detect in Radiographic Images Based on Visual Saliency[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):365-370.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-03-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-07-10
  • 出版日期: 2015-07-10
文章二維碼