亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于可見(jiàn)光機(jī)器視覺(jué)的棉花偽異性纖維識(shí)別方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金資助項(xiàng)目(31228016、61100115)、農(nóng)業(yè)科技成果轉(zhuǎn)化基金資助項(xiàng)目(2012GB23600629)和“十二五”國(guó)家科技支撐計(jì)劃資助項(xiàng)目(2011BAD21B01、2012BAD35B07)


Lint Cotton Pseudo-foreign Fiber Detection Based on Visible Spectrum Computer Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高皮棉質(zhì)量和皮棉中異纖的檢測(cè)精度,提出了一種基于機(jī)器視覺(jué)的棉花偽異性纖維識(shí)別方法。皮棉經(jīng)過(guò)開(kāi)松裝置被制成薄棉層,檢測(cè)通道兩側(cè)的相機(jī)對(duì)棉層進(jìn)行拍攝,并將采集到的棉層及異纖和偽異纖圖像保存到工控機(jī),通過(guò)圖像分塊及閾值分割等算法,提取偽異纖目標(biāo)區(qū)域,統(tǒng)計(jì)獲取區(qū)域的數(shù)個(gè)顏色、形狀和紋理特征,基于特征數(shù)據(jù),分別使用BP神經(jīng)網(wǎng)絡(luò)、一對(duì)一有向無(wú)環(huán)圖策略線(xiàn)性核函數(shù)支持向量機(jī)和徑向基核函數(shù)支持向量機(jī)對(duì)兩大類(lèi)棉花雜質(zhì)進(jìn)行分類(lèi)識(shí)別。實(shí)驗(yàn)結(jié)果表明,99.15%的偽異纖目標(biāo)可被準(zhǔn)確識(shí)別,徑向基核函數(shù)支持向量機(jī)在棉花異纖和偽異纖分類(lèi)識(shí)別中,總分類(lèi)正確率為95.60%,能夠滿(mǎn)足在線(xiàn)檢測(cè)的要求。

    Abstract:

    The quality and level of lint cotton are degraded because there are many foreign fibers and other harmful non-fiber trashes which are mixed into it in the process of plantation, production, transportation and machining. It will bring direct economic loss to textile industry. In order to improve the quality of lint cotton and increase the detection rate of foreign fibers, a pseudo-foreign fiber detection method based on visible spectrum machine vision was proposed. Lint cotton was made of thin layer after opening, and then transferred to the detection passage. Images of cotton layer with foreign fibers and pseudo-foreign fibers were snapshot by two line-scan cameras installed by the side of detection passage, and then it was stored into the industrial personal computers hard disk of experimental platform. Algorithms of image block and threshold were applied to extract pseudo-foreign fibers target areas, and statistical features in color, shape and texture of these target areas were calculated. Three classifiers: BP neural network, one to one directed acyclic graph linear kernel SVM and RBF kernel SVM were used to separate the two categories of cotton impurities. Results showed that 99.15% of the pseudoforeign fibers can be accurately identified, and the performance of RBF kernel SVM was the best among the three classifiers. With average recognition rate of 95.60%, the RBF kernel SVM can meet the online detection requirements of lint cotton trashes.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王欣,李道亮,楊文柱,李振波.基于可見(jiàn)光機(jī)器視覺(jué)的棉花偽異性纖維識(shí)別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(8):7-14. Wang Xin, Li Daoliang, Yang Wenzhu, Li Zhenbo. Lint Cotton Pseudo-foreign Fiber Detection Based on Visible Spectrum Computer Vision[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):7-14.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2014-11-25
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2015-08-10
  • 出版日期: