亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

介電譜無損檢測(cè)梨內(nèi)部品質(zhì)方法研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金資助項(xiàng)目(31171720)


Nondestructive Detection of Internal Qualities for Pears Using Dielectric Spectra
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了探索利用介電譜無損檢測(cè)采后梨內(nèi)部品質(zhì)的潛力,采用同軸探頭技術(shù)測(cè)量了采摘于4個(gè)果園的310個(gè)“碭山酥”梨在采后8周貯藏期間20~4500MHz間201個(gè)頻率點(diǎn)下的相對(duì)介電常數(shù)和介質(zhì)損耗因數(shù);分別以可溶性固形物含量(SSC)、硬度和含水率作為內(nèi)部品質(zhì)指標(biāo),基于x-y共生距離的樣本劃分法確定了校正集樣本233個(gè)和預(yù)測(cè)集樣本77個(gè)。采用連續(xù)投影選法(SPA)從全介電譜中分別提取出了15個(gè)、14個(gè)和15個(gè)用于預(yù)測(cè)SSC、硬度和含水率的特征變量;建立了基于全介電譜和SPA提取的特征變量預(yù)測(cè)SSC、硬度和含水率的最小二乘支持向量機(jī)(LSSVM)、極限學(xué)習(xí)機(jī)和BP神經(jīng)網(wǎng)絡(luò)模型。結(jié)果指出,基于全介電譜的LSSVM模型具有最好的SSC決定性能和良好的預(yù)測(cè)能力,其校正集和預(yù)測(cè)集相關(guān)系數(shù)分別為0.974和0.931,校正集和預(yù)測(cè)集均方根誤差分別為0.592°Brix和0.868°Brix,剩余預(yù)測(cè)偏差為2.65;基于SPA的LSSVM模型可粗略預(yù)測(cè)含水率;但是所有模型對(duì)硬度的預(yù)測(cè)能力很差。研究結(jié)果表明,介電譜結(jié)合LSSVM可用于無損檢測(cè)梨的SSC和含水率,但尚難用于檢測(cè)梨的硬度。

    Abstract:

    To explore the potential of dielectric spectra in predicting internal qualities of pears, the dielectric constants and loss factors were measured by using openended coaxialline probe technology at 201 discrete frequencies from 20MHz to 4500MHz on 310 pears, picked from four different orchards, during 8week storage. Soluble solids content, firmness, and moisture content were considered as internal qualities. Sample set partitioning based on joint x-y distances was used to subset partitioning, and 233 samples were used in calibration set and 77 samples were used in prediction set. To simply establish model, successive projection algorithm method was applied to extract characteristic variables (CVs), and 15, 14 and 15 CVs were extracted for soluble solids content, firmness and moisture content, respectively. The modeling methods, such as least square support vector machine (LSSVM), extreme learning machine (ELM) and back propagation (BP) network were used to establish soluble solids content, firmness and moisture content determination models based on full dielectric spectra and extracted CVs by SPA. The results showed that the LSSVM model based on full dielectric spectra had the best soluble solids content determination performance and good prediction ability, with the correlation coefficient of calibration set of 0.974 and prediction set of 0.931, the rootmeansquare error of calibration set of 0592°Brix and prediction set of 0.868°Brix, and the highest residual prediction deviation of 2.65. The LSSVM model based on SPA could be used to predict the moisture content roughly. However, all models had poor prediction ability on firmness. The study indicates that dielectric spectra combined with LSSVM could be used to predict soluble solids content and moisture content of pears, but it is difficult to predict firmness using dielectric spectra. The study provides a method for nondestructive determination of soluble solids content and moisture content of pears.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

郭文川,房麗潔,董金磊,王轉(zhuǎn)衛(wèi).介電譜無損檢測(cè)梨內(nèi)部品質(zhì)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):233-239. Guo Wenchuan, Fang Lijie, Dong Jinlei, Wang Zhuanwei. Nondestructive Detection of Internal Qualities for Pears Using Dielectric Spectra[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(9):233-239.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-04-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-09-10
  • 出版日期: