亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于赤池信息量準則的冬小麥葉面積指數(shù)估算
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

北京市自然科學基金資助項目(4141001)、北京市農(nóng)林科學院科技創(chuàng)新能力建設資助項目(KJCX20140417)和地理空間信息工程國家測繪地理信息局重點實驗室經(jīng)費資助項目


Estimation of Leaf Area Index of Winter Wheat Based on Akaike’s Information Criterion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    冬小麥葉面積指數(shù)(LAI)是重要的農(nóng)學參數(shù)之一,對冬小麥長勢分析、產(chǎn)量預測具有重要意義。使用2008/2009年在中國北京市通州區(qū)和順義區(qū)獲取的整個生育期冬小麥葉面積指數(shù)和對應的光譜數(shù)據(jù),將相關系數(shù)(|r|)-赤池信息量準則(AIC)、灰色關聯(lián)分析(GRA)-AIC、變量投影重要性(VIP)-AIC、VIP-預測殘差平方和(PRESS)系數(shù)分別與偏最小二乘法(PLS)進行整合,提出利用AIC擇優(yōu)構建冬小麥LAI估算模型,并與傳統(tǒng)PRESS方法構建的冬小麥LAI模型進行比較。結果表明:|r|-PLS-AIC、GRA-PLS-AIC、VIP-PLS-AIC、VIP-PLS-PRESS建模的R2分別為0.72、0.67、0.73和0.70,VIP PLS-AIC比|r|-PLS-AIC、GRA-PLS-AIC和VIP-PLS-PRESS有更好的冬小麥LAI預測能力??紤]到冬小麥LAI的時域特性,將2009/2010年相關數(shù)據(jù)引入模型中,評價模型對不同年際的冬小麥估測能力。研究表明VIP-PLS-AIC(RMSE為0.81)較|r|-PLS-AIC(RMSE為0.87)、GRA-PLS-AIC(RMSE為0.96)和VIP-PLS-PRESS(RMSE為0.83)有更高的精度。將AIC作為冬小麥LAI最優(yōu)估測模型篩選條件不僅能獲得同年LAI的最優(yōu)估算模型,而且適用于不同年際的冬小麥LAI探測研究。

    Abstract:

    Leaf area index (LAI) is an important parameter for evaluating the growth status and yield prediction of winter wheat. Spectral reflectance of leaves and concurrent LAI parameters of samples in Tongzhou and Shunyi Districts, Beijing City, China, were acquired during 2008/2009 winter wheat growth season. The correlation coefficient (|r|) Akaike’s information criterion (AIC), grey relational analysis (GRA)AIC, variable importance for projection (VIP)AIC, VIPpredictive residual error sum of square (PRESS) were integrated with partial least squares regression for estimating LAI, and the estimation models of optimal LAI were presented by using AIC and compared with traditional PRESS function. The results indicated that the R2 of |r|-PLS-AIC, GRA-PLS-AIC, VIP-PLS-AIC and VIP-PLS-PRESS models were 0.72, 0.67, 0.73 and 0.70, respectively. The VIP-PLS-AIC had higher predictive ability for winter wheat LAI than VIP-PLS-PRESS. Considering time domain characteristics of LAI, the relevant data acquired in Tongzhou and Shunyi Districts, Beijing City, China, during 2009/2010 winter wheat growth seasons were used to validate the models in different years. The results showed that VIP-PLS-AIC with RMSE of 081 had higher predictive ability than |r|-PLS-AIC with RMSE of 0.87, GRA-PLS-AIC with RMSE of 0.96 and VIP-PLS-PRESS with RMSE of 0.83. The results indicated that AIC could not only obtain the estimation model of optimal LAI at the same year, but also could be applied to the LAI detection in different years.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊福芹,馮海寬,李振海,金秀良,楊貴軍,戴華陽.基于赤池信息量準則的冬小麥葉面積指數(shù)估算[J].農(nóng)業(yè)機械學報,2015,46(11):112-120. Yang Fuqin, Feng Haikuan, Li Zhenhai, Jin Xiuliang, Yang Guijun, Dai Huayang. Estimation of Leaf Area Index of Winter Wheat Based on Akaike’s Information Criterion[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(11):112-120.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-08-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2015-11-10
  • 出版日期: 2015-11-10