亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

河龍區(qū)間近55 a降雨侵蝕力與河流輸沙量動(dòng)態(tài)變化分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

水利部公益性行業(yè)科研專項(xiàng)(201201083)


Dynamic Change Analysis of Rainfall Erosivity and River Sediment Discharge of He Long Reach of the Yellow River from 1957 to 2011
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于河龍區(qū)間12個(gè)雨量站點(diǎn)1957—2011年降雨日數(shù)據(jù)及輸沙量年數(shù)據(jù),采用滑動(dòng)平均、線性傾向估計(jì)、Mann-Kendall非參數(shù)檢驗(yàn)、累計(jì)距平、雙累積曲線等方法,分析了河龍區(qū)間近55 a降雨侵蝕力和輸沙量的動(dòng)態(tài)變化過程以及二者之間的相關(guān)關(guān)系,定量評估了降雨侵蝕力變化和人類活動(dòng)對河龍區(qū)間輸沙量變化的影響及貢獻(xiàn)率。結(jié)果表明,河龍區(qū)間近55 a降雨侵蝕力在378.1~2 324.6 MJ ·mm/(hm 2 ·h ·a)之間變化,其平均值為 1 319.7 MJ ·mm/(hm 2 ·h ·a); 整個(gè)研究期內(nèi)降雨侵蝕力呈不顯著減小趨勢,年均減小量為9.7 MJ ·mm/(hm 2 ·h ·a)。近55 a降雨侵蝕力變化過程可劃分為3個(gè)階段:1957—1974年為快速下降階段,其下降率為83.7%;1975—1999年為緩慢下降階段,其下降率為66.6%;2000—2011年為緩慢回升階段,其上升率為42.7%。以1957—1969年降雨侵蝕力為基準(zhǔn),20世紀(jì)70、80、90年代以及21世紀(jì)前12 a降雨侵蝕力分別減小了15.9%、19.5%、27.5%和22.7%。河龍區(qū)間近55 a輸沙量變化介于(0.09~21.37)億t之間,其平均值為5.6億t。整個(gè)研究期內(nèi)輸沙量呈極顯著的下降趨勢,其下降速率為0.19億 t/a。以1957—1969年輸沙量為基準(zhǔn),20世紀(jì)70、80、90年代以及21世紀(jì)前12 a輸沙量分別減少了27.3%、64.1%、54.8%和88.7%。經(jīng)Mann-Kendall非參數(shù)檢驗(yàn)法和累計(jì)曲線法綜合判定,1979年為河龍區(qū)間輸沙量突變年份。輸沙量與降雨侵蝕力具有極好的線性相關(guān)性。通過建立二者雙累積曲線方程,計(jì)算得出20世紀(jì)80、90年代和21世紀(jì)前12 a降雨侵蝕力變化對輸沙量變化的貢獻(xiàn)率分別為22.6%、44.3%和19.0%,而人類活動(dòng)對輸沙量變化的貢獻(xiàn)率分別為77.4%、55.7%和81.0%,人類活動(dòng)對輸沙量變化的影響程度較大。1980—1989年和2000—2011年具有基本相同的降雨侵蝕力條件,但后者的輸沙量卻比前者減少67.6%,表明2000—2011年河流輸沙量的變化主要由人類活動(dòng)引起,人類活動(dòng)每年減少輸沙量2.5億t。

    Abstract:

    The dynamic change of rainfall erosivity and river sediment discharge as well as the correlation between river sediment discharge and rainfall erosivity were analyzed based on daily rainfall data and yearly sediment discharge of 12 rainfall stations located in He-Long reach of the Yellow River from 1957 to 2011. Meanwhile, the impact and contribution of rainfall erosivity changes and human activities on the river sediment discharge changes were quantitatively evaluated. The main methods used were the moving average, linear trend estimation, Mann-Kendall nonparametric test, cumulative departure curve and double mass curve. The results showed that rainfall erosivity in He-Long reach from 1957 to 2011 shifted from 378.1 MJ ·mm/(hm 2 ·h ·a) to 2 324.6 MJ ·mm/(hm 2 ·h ·a) with a mean of 1 319.7 MJ ·mm/(hm 2 ·h ·a), and rainfall erosivity did not exhibit significant downtrend. The decrement of rainfall erosivity per year in 1957—2011 was 9.7 MJ ·mm/(hm 2 ·h ·a). The changing trend of rainfall erosivity was divided into three stages during past 55 years in He-Long reach, which consisted of a rapid declining trend from 1957 to 1974, a slow decreasing trend from 1975 to 1999, and a slow increasing trend from 2000 to 2011. The declining rates of the first and second stages were 83.7% and 66.6%, respectively, and the increasing rate of the third stage was 42.7%. With rainfall erosivity in 1957—1969 as a reference, rainfall erosivities in the 1970s, 1980s, 1990s and the first 12 years of the 21st century were decreased by 15.9%, 19.5%, 27.5% and 22.7%, respectively. The river sediment discharge in He-Long reach from 1957 to 2011 shifted from 9×10 6 t to 2.14×10 9 t with a mean of 5.60×10 8 t, and river sediment discharge showed highly significant downtrend. The decrement of river sediment discharge in 1957—2011 was 1.9×10 7 t/a. With river sediment discharge in 1957—1969 as a reference, river sediment discharges in the 1970s, 1980s, 1990s and the first 12 years of the 21st century were decreased by 27.3%, 64.1%, 54.8% and 88.7%, respectively. The Mann-Kendall nonparametric test and the cumulative departure curve showed that the abrupt change of river sediment discharge appeared in 1979. There was a better linear correlation between river sediment discharge and rainfall erosivity. According to the double mass curve equation, the contributions of rainfall erosivity to the river sediment discharge changes in the 1980s, 1990s and the first 12 years of the 21st century were 22.6%, 44.3% and 19.0%, respectively; while the contributions of human activities to the river sediment discharge changes were 77.4%, 55.7% and 81.0%, respectively. Therefore, the impact of human activities on the river sediment discharge changes was dominated. Although rainfall erosivity in two periods of 1980—1989 and 2000—2011 was similar, river sediment discharge in 2000—2011 was decreased by 67.6%, compared with that in 1980—1989. Thus, the river sediment discharge changes were mainly caused by human activities and the decrement of river sediment discharge per year caused by human activities was 2.5×10 8 t in 2000—2011.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

付金霞,張鵬,鄭粉莉,關(guān)穎慧,高燕.河龍區(qū)間近55 a降雨侵蝕力與河流輸沙量動(dòng)態(tài)變化分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(2):185-192,207. Fu Jinxia, Zhang Peng, Zheng Fenli, Guan Yinghui, Gao Yan. Dynamic Change Analysis of Rainfall Erosivity and River Sediment Discharge of He Long Reach of the Yellow River from 1957 to 2011[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(2):185-192,207.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-09-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-02-25
  • 出版日期: