亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于極限學(xué)習(xí)機(jī)的土壤硝態(tài)氮預(yù)測(cè)模型研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31201136、61134011)


Prediction Model of Soil NO-3-N Concentration Based on Extreme Learning Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    利用極限學(xué)習(xí)機(jī)模型解譯高氯離子干擾下鹽堿土中硝酸根離子選擇電極響應(yīng)信號(hào),系統(tǒng)分析了漂移校正算法、能斯特及極限學(xué)習(xí)機(jī)模型對(duì)電極法硝態(tài)氮(NO-3-N)預(yù)測(cè)結(jié)果準(zhǔn)確性的影響差異。結(jié)果表明,漂移校正算法可明顯提高傳感器標(biāo)定方程的重復(fù)性和一致性,響應(yīng)斜率及截距電位的波動(dòng)范圍分別縮小了3.67%和7.25%;極限學(xué)習(xí)機(jī)模型的最優(yōu)隱含層節(jié)點(diǎn)數(shù)為14;基于極限學(xué)習(xí)機(jī)的電極法NO-3-N質(zhì)量濃度預(yù)測(cè)模型可較好抑制鹽堿土中氯離子干擾,與標(biāo)準(zhǔn)檢測(cè)結(jié)果之間的最大絕對(duì)誤差和均方根誤差分別為6.36mg/L和4.02mg/L。相關(guān)研究結(jié)論可為電極法測(cè)土過程中的信號(hào)校正、數(shù)據(jù)處理模型和模型參數(shù)選取提供參考。

    Abstract:

    The soil nitrate-nitrogen (NO-3-N) is essential element for crop growth. Because of the obvious advantages on cost, applicability and easy-implementation, the nitrate ion-selective electrode (ISE) was demonstrated potentials in both laboratory and in-field researches on soil available nitrogen detections. However, problems of unidealistic selectivity and potential drift usually limited the application of ISE. The extreme learning machine algorithm was used to decouple the signals of nitrate ion-selective electrode from the interference of chloride. Three data processing algorithms, including drift correction, Nernstian model and extreme learning machine were systemically analyzed. Experiments were carried out on the self-designed multi-channel nutrient detection platform. Totally 150 soil samples were selected for the system validation. The experimental results indicated that the accuracy and consistency of sensor’s scaling equations were effectively improved by drift correction algorithm. The variations of response slope and intercept potential were reduced by 3.67% and 7.25%, respectively. The neuron number in hidden layer of the extreme learning machine was 14,which were tested as optimized parameter. The extreme learning machine could effectively decouple the interference of chloride from nitrate ion-selective electrode in saline alkali soil. The maximum absolute error and root mean square error were 6.36mg/L and 4.02mg/L, respectively. In conclusion, the research results can provide references in the related studies for soil detection by ion-selective electrode.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

張淼,孔盼,李雁華,任海燕,蒲攀,張麗楠.基于極限學(xué)習(xí)機(jī)的土壤硝態(tài)氮預(yù)測(cè)模型研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(6):93-99. Zhang Miao, Kong Pan, Li Yanhua, Ren Haiyan, Pu Pan, Zhang Li’nan. Prediction Model of Soil NO-3-N Concentration Based on Extreme Learning Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(6):93-99.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-12-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-06-10
  • 出版日期: 2016-06-10