亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

自然場景下蘋果圖像FSLIC超像素分割方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(31401291)、江蘇省自然科學基金項目(BK20140720、BK20140729)和中央高?;鹂蒲袠I(yè)務費專項資金項目(KYZ201325)


FSLIC Superpixel Segmentation Algorithm for Apple Image in Natural Scene
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應用Cauchy-Schwarz不等式,推導出一個聚類搜索過程中剝離不必要計算的條件,早期預估后舍掉符合預設條件的候選聚類,提出了基于自然場景的快速簡單線性迭代聚類算法(FSLIC算法)。對包含極端惡劣條件下的500幅蘋果圖像進行了邊界召回率檢驗和運行速度測試;統(tǒng)計了極端惡劣條件下的30幅蘋果圖像的全局錯誤率GCE、假陽性率FPR和假陰性率FNR。試驗表明,提出的FSLIC算法減小了后續(xù)迭代過程中的冗余誤差,邊界召回率較GB超像素分割算法平均提高了21.7%,速度是GB超像素分割算法的1.83倍;整個圖像分割過程中基于超像素的分割算法(GB、FSLIC)的GCE值較常規(guī)分割算法(BP、WT、SVM)平均減小了13%,較常規(guī)算法的GCE值減小了19%。

    Abstract:

    Real time efficiency is one of the bottleneck problems in the field of image processing, especially in the natural scene of the agricultural robot vision system. Nowadays superpixel segmentation algorithm was proposed as the high robustness to deal with the random uncertainty in natural scene. Simple linear iterative clustering(SLIC) has drawn much attention due to its outstanding performance in terms of accuracy, speed, antishadow and antihighlight. In this paper, by applying the Cauchy-Schwarz inequality, we derived a condition to leave unnecessary operations from the cluster inspection procedure. In the proposed algorithm, we reduced the redundant computation by using a robust inequality condition based on weighted L2 norm of pixel and cluster center representation. Then we put up with an advanced algorithm: FSLIC algorithm. We built a database with 2000 apple images in almost all natural conditions. Several kinds of extreme situations were chosen: high intensity of illumination light condition, low intensity of illumination backlight condition, uneven illumination of cloudy condition, adjacency and severe adhesion condition. The error rate curves of the insufficient segmentation, the hit rate curves of the boundary and execution time were analyzed with the 500 apple images; the GCE, FNR and FPR were detected with the 30 images in extreme condition. In the experimental results, it was confirmed that the GCE in Graphbased and FSLIC algorithm was reduced by 13% than BP algorithm, WT algorithm and SVM algorithm, the GCE in FSLIC algorithm was reduced by 19% than the traditional algrithms. The hit rate of the boundary in FSLIC algorithm was increased by 21.7% and the speed was 1.83 times than Graphbased algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

徐偉悅,田光兆,姬長英,張波,蔣思杰,張純.自然場景下蘋果圖像FSLIC超像素分割方法[J].農(nóng)業(yè)機械學報,2016,47(9):1-10. Xu Weiyue, Tian Guangzhao, Ji Changying, Zhang Bo, Jiang Sijie, Zhang Chun. FSLIC Superpixel Segmentation Algorithm for Apple Image in Natural Scene[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):1-10.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-06-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10