亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

夏玉米葉面積指數(shù)遙感反演研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41201438)、山西省青年研究基金項(xiàng)目(2014021032-1)和太原理工大學(xué)?;痦?xiàng)目(2013Z016)


Inversion Study on Leaf Area Index of Summer Maize Using Remote Sensing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    利用LAI-2000的觀測(cè)數(shù)據(jù)與基于HJ衛(wèi)星遙感數(shù)據(jù)生成的植被指數(shù),結(jié)合3種常用的回歸模型,構(gòu)造了夏玉米分別按全生育期、不同生育階段和閾值分段的葉面積指數(shù)(Leaf area index, LAI)反演模型;獲取了3種模式下LAI的最優(yōu)反演模型;在驗(yàn)證和評(píng)價(jià)各模型可靠性之后,生成了夏玉米在營養(yǎng)生長期、抽雄期和生殖生長期的LAI分布圖;并將基于HJ影像反演得到的LAIHJ與MODIS LAI產(chǎn)品(MOD15A2)LAIM進(jìn)行了對(duì)比。研究發(fā)現(xiàn),與各種通用植被指數(shù)相比,針對(duì)HJ CCD數(shù)據(jù)構(gòu)造的環(huán)境植被指數(shù)HJVI與LAI的相關(guān)性在3種反演模式中均為最佳。HJVI與全生育期LAI的相關(guān)性達(dá)到0.875,在不同生育階段與LAI的相關(guān)性也高于其他植被指數(shù)(營養(yǎng)生長期線性模型最佳,〖JP3〗?jīng)Q定系數(shù)為0.769;抽雄期對(duì)數(shù)模型最佳,決定系數(shù)為0.783;生殖生長期指數(shù)模型最佳,決定系數(shù)為0.703)?!糐P〗普適性植被指數(shù)中,OSAVI適用于夏玉米生長前中期的LAI反演,NDVI適用于夏玉米生長后期的LAI反演。在夏玉米全生育期內(nèi),各植被指數(shù)與LAI的相關(guān)性整體較高,但最優(yōu)回歸模型出現(xiàn)在按不同生育階段反演的模式中。LAI小于3時(shí)EVI為精度最佳指數(shù)(決定系數(shù)為0.358),LAI不小于3時(shí)OSAVI為精度最佳指數(shù)(決定系數(shù)為0.515)。在夏玉米3個(gè)生育階段,LAIM與LAIHJ的相關(guān)性分別達(dá)到0.732、0.761、0.661。HJ遙感數(shù)據(jù)具有較強(qiáng)的LAI反演能力,其高時(shí)間和高空間分辨率的特征可以使其代替?zhèn)鹘y(tǒng)的中分辨率遙感數(shù)據(jù)而成為農(nóng)業(yè)遙感研究的重要數(shù)據(jù)源。

    Abstract:

    The observation data of LAI-2000 and vegetation index was generated by satellite remote sensing data of HJ, combining three kinds of commonly used regression model. LAI (Leaf area index) inversion model was constructed according to growth period, growth stage and threshold boundaries of summer maize, respectively. The optimal LAI inversion model was acquired based on the above three modes. The summer corn LAI scatter grams of the vegetative growth period, the tasseling stage as well as the reproductive stage were generated after verification and evaluation of the model reliability. The productions of MODIS LAI (MOD15A2) were verified by LAIHJ based on the inversion of model HJ image. According to the survey, except HJVI, during the whole growth period of summer maize, a linear model of RVI with LAI was regarded as the best fitting model (R2 = 0.662); during the vegetative growth period, a linear model of OSAVI with LAI was regarded as the best fitting model (R2=0.724); at the tasseling stage, index model of OSAVI with LAI was regarded as the best fitting model(R2=0.749); at the reproductive stage, a linear model of NDVI with LAI was regarded as the best fitting model(R2=0.700). The correlation of HJVI and LAI at the growth period achieved to 0875, and the correlation at different growth stages with LAI is higher than the other vegetation indexes (during the vegetative period, R2=0.769; at the tasseling stage, R2=0.783; at the reproductive stage, R2=0.703). EVI is the best index when LAI is less than 3 (R2=0.358), while OSAVI is the best when LAI is more than 3(R2=0.515). During the three reproductive periods, R2 of LAIM and LAIHJ is 0.732, 0.761 and 0.661. Conclusions were drawn: the inversion method of LAI at different stages is optimal. HJVI shows obvious advantage for LAI inversion ability. The production of MODIS LAI could be used for crop monitoring in special situation. The study not only broadens the mode of inversion LAI using vegetation index, but also confirms the importance of HJ data in agricultural field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉珺,龐鑫,李彥榮,杜靈通.夏玉米葉面積指數(shù)遙感反演研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):309-317. Liu Jun, Pang Xin, Li Yanrong, Du Lingtong. Inversion Study on Leaf Area Index of Summer Maize Using Remote Sensing[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):309-317.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-11-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10