亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

最優(yōu)分割尺度支持下高分遙感影像水土資源信息分類
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金青年基金項(xiàng)目(51209153、41301021)、數(shù)字制圖與國土信息應(yīng)用工程國家測繪地理信息局重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(DM2014SC02)和國土資源部地學(xué)空間信息技術(shù)重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(KLGSIT2015-04)


Soil and Water Resources Information Classification in High Resolution Images with Optimal Segmentation Scale
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提升水土資源信息分類精度,以無人機(jī)航拍獲取的高分辨率影像為實(shí)驗(yàn)對(duì)象,提出了最優(yōu)分割尺度和決策樹支持下的對(duì)象級(jí)影像分類方法。首先,根據(jù)影像內(nèi)部的同質(zhì)性和異質(zhì)性,建立了分割質(zhì)量函數(shù),通過該函數(shù)獲取了最優(yōu)分割尺度;然后,提出了基于光譜信息和面積信息的最優(yōu)分割尺度評(píng)價(jià)模型對(duì)分割結(jié)果進(jìn)行評(píng)價(jià);最后,引入決策樹規(guī)則機(jī)制,完成了水土資源信息分類,并與最大似然法分類結(jié)果進(jìn)行對(duì)比。研究結(jié)果表明:所建立的分割質(zhì)量函數(shù)能準(zhǔn)確獲取最優(yōu)分割尺度,有效避免了人工分割帶來的主觀性,所提方法分類總體精度為86.78%,最大似然分類方法總體精度為77.59%,在分類精度上有較大提升。

    Abstract:

    With the rapid development of agricultural informationization, the demand for accuracy and reality of regional soil and water resources information data becomes higher and higher. The progress of remote sensing technology makes the selectable data source richer. High spatial resolution images contain rich shape and texture information which are widely used in soil and water resources survey, while traditional image classification method cannot satisfy the requirement any more.Because of this, unmanned aerial vehicle (UAV) images were used as experimental objects, and the image objectoriented classification method based on optimal segmentation scale and decision tree was proposed. Firstly, a segmentation quality function was established based on internal homogeneity and heterogeneity of images, and the optimal segmentation scale was obtained according to this function. Then, optimal segmentation scale evaluation model based on spectral and area information was proposed to evaluate segmentation result. Lastly, soil and water resource information classification was completed by introducing decision tree rule mechanism, and compared with the maximum likelihood classification results. The experimental results showed that the segmentation quality function can obtain optimal segmentation scale accurately, and avoid the subjectivity of manual segmentation. The overall accuracy is 86.78% and compared with 77.59% of maximum likelihood classification method has a great improvement in classification accuracy.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

魯恒,付蕭,李龍國,劉超,白茹月,李乃穩(wěn).最優(yōu)分割尺度支持下高分遙感影像水土資源信息分類[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(9):327-333. Lu Heng, Fu Xiao, Li Longguo, Liu Chao, Bai Ruyue, Li Naiwen. Soil and Water Resources Information Classification in High Resolution Images with Optimal Segmentation Scale[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):327-333.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-06-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-09-10
  • 出版日期: 2016-09-10