亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于隨機(jī)森林模型的山體滑坡空間預(yù)測(cè)研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41401385)、福建省教育廳基金項(xiàng)目(JA14126)和福建農(nóng)林大學(xué)林學(xué)院青年基金項(xiàng)目


Landslide Spatial Prediction Based on Random Forest Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    滑坡災(zāi)害空間分布的準(zhǔn)確預(yù)測(cè)是實(shí)現(xiàn)防災(zāi)減災(zāi)的重要途徑。以2010年福建省順昌地區(qū)滑坡資料為基礎(chǔ)數(shù)據(jù),分別應(yīng)用隨機(jī)森林模型和邏輯回歸模型對(duì)福建順昌地區(qū)山體滑坡發(fā)生與滑坡因子之間的關(guān)系進(jìn)行實(shí)證分析,通過(guò)模型變量篩選、模型精度分析,探討了隨機(jī)森林模型在我國(guó)南方山體滑坡空間預(yù)測(cè)中的適應(yīng)性。結(jié)果表明:隨機(jī)森林模型對(duì)滑坡發(fā)生數(shù)據(jù)的擬合效果比邏輯回歸模型好,其對(duì)順昌地區(qū)滑坡發(fā)生數(shù)據(jù)的預(yù)測(cè)精度為90.8%,而邏輯回歸模型的預(yù)測(cè)精度為81.8%;隨機(jī)森林模型對(duì)研究區(qū)滑坡發(fā)生的泛化能力比邏輯回歸模型好,其預(yù)測(cè)出高危險(xiǎn)區(qū)和較高危險(xiǎn)區(qū)所包含的滑坡比總和為66.05%,而邏輯回歸模型為63.34%。研究結(jié)果表明隨機(jī)森林模型的性能優(yōu)于邏輯回歸模型,可用于順昌地區(qū)基于滑坡因子的未來(lái)滑坡發(fā)生的預(yù)測(cè)預(yù)報(bào)。

    Abstract:

    Random forest (RF) is a non-parametric technology which was firstly proposed by Leo Breiman and Cutler Adele in 2001. It was used to deal with the classification and regression problems by gathering a large number of classification tree, which can improve the prediction accuracy. It was applied in the ecological field in recent years. Predicting the spatial distribution of landslide hazard was an important way to achieve disaster prevention and mitigation. The landslide dataset of Shunchang in Fujian Province was taken as case to identify the relationship between mountain landslide occurrence and landslide factors by using RF model and logistic regression (LR) model respectively with landform, meteorological hydrology, soil and vegetation factors. The applicability of RF on landslide prediction in the southern mountain of China was tested by procedure of parameter selection and analysis of model accuracy. The result showed that the goodness of fit of RF was better than that of LR model. The prediction accuracy of RF on the landslide data was 90.8%, while the prediction accuracy of LR was 81.8%. The generalization of RF in the study area was better than that of LR model. The high risk areas and higher risk areas contained 66.05% of the total landslide, which was predicted by RF, while that of LR was 63.34%. The result of model comparison revealed that the RF model was superior to LR model on the mountain landslide prediction in the study area, thus it can be used in the landslide prediction and the division of landslide danger grade with the sample data. In addition, RF model could be applied to other relevant research.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

余坤勇,姚雄,邱祈榮,劉健.基于隨機(jī)森林模型的山體滑坡空間預(yù)測(cè)研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(10):338-345. Yu Kunyong, Yao Xiong, Qiu Qirong, Liu Jian. Landslide Spatial Prediction Based on Random Forest Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(10):338-345.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-03-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2016-10-10
  • 出版日期:
文章二維碼