亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

無人駕駛鉸接式車輛強(qiáng)化學(xué)習(xí)路徑跟蹤控制算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2011AA060404)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(FRF-TP-16-004A1)


Reinforcement Learning Algorithm for Path Following Control of Articulated Vehicle
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對無人駕駛鉸接式運(yùn)輸車輛無人駕駛智能控制問題,提出了一種強(qiáng)化學(xué)習(xí)自適應(yīng)PID路徑跟蹤控制算法。首先推導(dǎo)了鉸接車的運(yùn)動學(xué)模型,根據(jù)該模型建立實(shí)際行駛路徑與參考路徑偏差的模型,以PID控制算法為基礎(chǔ),設(shè)計(jì)了基于強(qiáng)化學(xué)習(xí)的自適應(yīng)PID路徑跟蹤控制器,該控制器以橫向位置偏差、航向角偏差、曲率偏差為輸入,以轉(zhuǎn)角控制量為輸出,通過強(qiáng)化學(xué)習(xí)算法對PID參數(shù)進(jìn)行在線自適應(yīng)整定。最后在實(shí)車道路試驗(yàn)中驗(yàn)證了控制器的路徑跟蹤質(zhì)量并與傳統(tǒng)PID控制結(jié)果進(jìn)行了對比。結(jié)果表明,相比于傳統(tǒng)PID控制器,強(qiáng)化學(xué)習(xí)自適應(yīng)PID控制器能夠有效減小超調(diào)和震蕩,實(shí)現(xiàn)精確跟蹤參考路徑,可以較好地實(shí)現(xiàn)系統(tǒng)動態(tài)性能和穩(wěn)態(tài)誤差性能的優(yōu)化。

    Abstract:

    With the industry 4.0 embraced a number of contemporary automation, data exchange and manufacturing technologies, the autonomous driving system is widespread. In order to enable the autonomous driving, path following strategies are essential to maintain the normal work of the vehicles. The articulated frame steering vehicles (ASV) are flexible, efficient and widely implemented in agriculture, mining, construction and forestry sectors due to their high maneuverability. The articulated vehicle usually composes of two units, a tractor and a trailer, which are connected by an articulation joint. However, as the ASV dynamics are significantly different from the conventional vehicles with front wheel steering, the path following controller derived for conventional vehicles is considered not to be applicable for the ASVs. Thus the path following control is challenging the robustness. A path following strategy is proposed for the ASVs on the basis of reinforcement learning adaptive PID algorithm. The kinematic model of the ASV is derived by neglecting the vehicle dynamics. Three measurable errors are defined to indicate the deviation of real path from reference path, i.e., lateral displacement error, orientation error and curvature error. These errors are served as the inputs in order to synthesize the path following controller and the desired steering angle is served as the output of path following controller. Based on the PID algorithm, the reinforcement learning method is selected for optimizing the parameters of PID online to reduce the overshoot and chattering. Furthermore, the prototype test is conducted to evaluate the performance of the proposed control law. The result shows that compared with the traditional PID, reinforcement learning adaptive PID controller can restrain the overshoot and chattering efficiently and follow the reference path accurately.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

邵俊愷,趙翾,楊玨,張文明,康翌婷,趙鑫鑫.無人駕駛鉸接式車輛強(qiáng)化學(xué)習(xí)路徑跟蹤控制算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):376-382. SHAO Junkai, ZHAO Xuan, YANG Jue, ZHANG Wenming, KANG Yiting, ZHAO Xinxin. Reinforcement Learning Algorithm for Path Following Control of Articulated Vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):376-382.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-04-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-03-10
  • 出版日期: