亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于VTCI和分位數(shù)回歸模型的冬小麥單產(chǎn)估測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41371390)


Winter Wheat Yield Estimation Method Based on Quantile Regression Model and Remotely Sensed Vegetation Temperature Condition Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    條件植被溫度指數(shù)(VTCI)是一種綜合了歸一化植被指數(shù)(NDVI)與地表溫度(LST)的遙感干旱監(jiān)測(cè)方法,在關(guān)中平原的近實(shí)時(shí)干旱監(jiān)測(cè)中具有其適用性。分位數(shù)回歸能全面反映因變量的條件分布在不同分位數(shù)處的特征,回歸結(jié)果穩(wěn)健可靠。為了進(jìn)一步研究VTCI干旱監(jiān)測(cè)結(jié)果與小麥單產(chǎn)之間的關(guān)系及提高冬小麥單產(chǎn)估測(cè)精度,構(gòu)建了不同分位數(shù)τ(0.1, 0.3, 0.5, 0.7, 0.9)下關(guān)中平原各市2008—2014年的冬小麥主要生育期VTCI與單產(chǎn)之間的線性回歸模型,并基于中位數(shù)(τ=0.5)回歸模型對(duì)研究區(qū)域的冬小麥單產(chǎn)進(jìn)行了估測(cè)。結(jié)果表明,分位數(shù)回歸模型比較全面地反映了不同分位數(shù)下冬小麥單產(chǎn)分布與VTCI之間的相關(guān)程度,彌補(bǔ)了最小二乘估產(chǎn)模型回歸結(jié)果單一、易受異常值影響等的不足。中位數(shù)回歸模型的單產(chǎn)估測(cè)結(jié)果與實(shí)際單產(chǎn)之間的相對(duì)誤差和均方根誤差的最小值及平均值均低于最小二乘回歸模型,估測(cè)精度較高。此外,中位數(shù)單產(chǎn)估測(cè)模型獲取的冬小麥估產(chǎn)結(jié)果在年際變化規(guī)律與空間分布特征上與實(shí)際產(chǎn)量均較相符,說(shuō)明分位數(shù)回歸在研究VTCI與產(chǎn)量之間的關(guān)系及冬小麥單產(chǎn)估測(cè)中具有其適用性與可靠性。

    Abstract:

    Vegetation temperature condition index (VTCI) combines normalized difference vegetation index (NDVI) and land surface temperature (LST), and is applicable to a more accurate monitoring of droughts in Guanzhong Plain, Shaanxi Province, China. Quantile regression is a tool for comprehensively reflecting the conditional distribution characters under different quantiles, and its regression results are steady and reliable. In order to achieve a better correlation between winter wheat yield and the weighted VTCI as well as a higher yield estimation accuracy, linear regression models between the weighted VTCI and yields in the cities of Guanzhong Plain in the years from 2008 to 2014 were analyzed by using the quantile regression whose quantiles were set to be 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. These quantile regression results roundly reflected the distribution of the yields under different drought conditions and were beneficial supplement of the linear regression from which the single fitted line and impressionable results from outliers were obtained. The wheat yield estimation model based on the median regression (quantile equalled to 0.5) was used to monitor the wheat yields in the cities of Guanzhong Plain from 2008 to 2014, the average and minimum values of the relative errors and the root mean square errors (RMSE) between the estimated yields and the actual yields were all lower than those derived from the ordinary least square method. Additionally, the characteristics of inter-annual evolution and spatial distribution of the estimated yields using the median regression model were in good agreement with the actual situation, which indicated that the quantile regression was feasible and reliable in the research of winter wheat yield estimation and the relationship between yield and drought.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王蕾,王鵬新,李俐,張樹譽(yù).基于VTCI和分位數(shù)回歸模型的冬小麥單產(chǎn)估測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):167-173,166. WANG Lei, WANG Pengxin, LI Li, ZHANG Shuyu. Winter Wheat Yield Estimation Method Based on Quantile Regression Model and Remotely Sensed Vegetation Temperature Condition Index[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(7):167-173,166.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-11-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-07-10
  • 出版日期: