亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜聯(lián)合流化床富集的紅葡萄酒白藜蘆醇檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31401480)


Detection of Resveratrol in Red Wine Based on Fluidized Bed Preconcentration-hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用高光譜成像技術(shù)聯(lián)合流化床富集技術(shù)對紅葡萄酒中微量成分白藜蘆醇的含量進(jìn)行快速檢測。通過高效液相色譜法檢測紅葡萄酒中白藜蘆醇的含量,設(shè)計流化床富集裝置,研究HPD826、DA-201、AB-8、H103、HPD600共5種樹脂對紅葡萄酒中白藜蘆醇的富集效果,篩選出H103樹脂富集效果最優(yōu)。將H103大孔吸附樹脂用于富集紅葡萄酒中的白藜蘆醇。獲取吸附白藜蘆醇后樹脂的高光譜反射圖像(900~1700nm),對比5種光譜預(yù)處理方法(MSC、SNV、SG-S、RN、QN)對白藜蘆醇含量的建模效果,優(yōu)選出RN預(yù)處理方法;建立PLSR、SVMR(LK-SVMR、PK-SVMR、RBF-SVMR和S-SVMR)、PCR的6種回歸模型,優(yōu)選出LK-SVMR校正模型和PLSR校正模型,將其用于預(yù)測集樣本進(jìn)一步評價模型的精度和穩(wěn)定性,最終確定PLSR模型為最佳模型。研究表明,基于RN-PLSR的紅葡萄酒中白藜蘆醇的定量預(yù)測模型相關(guān)系數(shù)RP=0.8528,預(yù)測集均方根誤差為0.0360,RC=0.8783,校正集均方根誤差為0.0330,預(yù)測效果最佳,為高光譜技術(shù)在微量、痕量成分檢測方面的應(yīng)用提供了參考。

    Abstract:

    A rapid detection method for reveratrol content in red wine was built by hyperspectral imaging technology combined with fluidized bed preconcentration technology. The reveratrol content in red wine was determined by high performance liquid chromatography. An enrichment apparatus of fluidized bed was built to explore the enrichment effects, which five macroreticular resins, such as HPD826, DA-201, AB-8, H103 and HPD600, enriched reveratrol in red wine. The result showed that H103 resin had the best enrichment effect. H103 resin was used to enrich resveratrol from wine, the 900~1700nm spectral images of resins which absorbed reveratrol were collected. Compared with five spectra preprocessing methods (MSC, SNV, SG-S, RN and QN), RN was selected as the best method for modeling effects of resveratrol content. Then, six regression models based on PLSR, SVMR (LK-SVMR, PK-SVMR, RBF-SVMR and S-SVMR) and PCR were established. Correction models based on LK-SVMR and PLSR were selected to evaluate their accuracy and stability in prediction sets. Finally, the PLSR model was chosen as the best model. The research showed that the quantitative prediction model of resveratrol in red wine based on PLSR obtained the best prediction effect, its RP was 0.8528, RMSEP was 0.0360, RC was 0.8783, and RMSEC was 0.0330. The results provided references for the detection of trace components by hyperspectral technology.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉貴珊,房盟盟,馮愈欽,郭紅艷,何建國.基于高光譜聯(lián)合流化床富集的紅葡萄酒白藜蘆醇檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2017,48(7):301-308. LIU Guishan, FANG Mengmeng, FENG Yuqin, GUO Hongyan, HE Jianguo. Detection of Resveratrol in Red Wine Based on Fluidized Bed Preconcentration-hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(7):301-308.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-10-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-07-10
  • 出版日期: