亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

番茄粘彈性參數(shù)機(jī)器人抓取在線估計
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31471419)、高等學(xué)校博士學(xué)科點專項科研基金博導(dǎo)類項目(20130097110043)和浙江省自然科學(xué)基金項目(LY17F030006)


Online Estimation of Tomato Viscoelastic Parameters during Robot Grasping
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了使采摘機(jī)器人在抓取過程中能夠?qū)Ρ蛔ス叩恼硰椥粤W(xué)參數(shù)進(jìn)行快速估計,實時優(yōu)化抓取過程,減少末端執(zhí)行器對被抓取對象造成機(jī)械損傷,以抓取力、變形量、作用時間為輸入,建立了番茄粘彈性參數(shù)估計的人工神經(jīng)網(wǎng)絡(luò)模型。運用質(zhì)構(gòu)儀蠕變試驗所測的力、變形和時間,以及粘彈性參數(shù)E1、E2、η1、η2作為訓(xùn)練數(shù)據(jù)集,確定了人工神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu)和參數(shù),并測試了網(wǎng)絡(luò)模型的粘彈性參數(shù)估計性能。利用二指機(jī)器人末端執(zhí)行器對隨機(jī)番茄樣本進(jìn)行抓取試驗,并在抓取過程中用此模型來在線估計粘彈性參數(shù)。通過與質(zhì)構(gòu)儀的實測值進(jìn)行對比發(fā)現(xiàn),當(dāng)時間t≥0.2s時,各參數(shù)的估計值與實測值之間的相對誤差均在25%以內(nèi),并根據(jù)0.2s時得到的粘彈性參數(shù)對機(jī)器人抓取力范圍進(jìn)行了估計。結(jié)果表明,利用此方法在機(jī)器人抓取過程中可以對被抓番茄粘彈性特性進(jìn)行估計,為在線優(yōu)化抓取力提供了依據(jù)。

    Abstract:

    When a picking robot is able to quickly estimate the viscoelastic parameters of the fruits and vegetables in the process of grasping, an optimization of the grasping process in real time can be carried out and the mechanical damage caused by the end-effector can be alleviated. Artificial neural network (ANN) model of tomato viscoelastic parameters estimation was established by using grasping force, deformation and acting time as inputs. The force, deformation and time measured by creep test with texture analyzer, as well as the viscoelastic parameters (E1, E2, η1, η2) were used as the training data set to determine the topological structure and parameters of the artificial neural network. Then performance of the network model was tested. A two finger robot end-effector was applied to grasp tomato samples selected randomly, and the ANN model was used to estimate the viscoelastic parameters online during the process of grasping. Compared with the measured value by texture analyzer, when time was more than or equal to 0.2s, the relative error between the estimated value and the measured value were less than 25%, and according to the viscoelastic parameters obtained from the 0.2s time, the range of the robot’s grasping force was estimated. The results showed that the method could be used to estimate the viscoelastic properties of the grasped tomatoes during the robot grasping process, which provided the basis for the online optimization of grasping force.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周俊,張娜,孟一猛,王明軍.番茄粘彈性參數(shù)機(jī)器人抓取在線估計[J].農(nóng)業(yè)機(jī)械學(xué)報,2017,48(8):26-32. ZHOU Jun, ZHANG Na, MENG Yimeng, WANG Mingjun. Online Estimation of Tomato Viscoelastic Parameters during Robot Grasping[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):26-32.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-08-10
  • 出版日期: