Abstract:Paddy field mechanization ridging is constructed by agricultural machinery to meet the production requirements of rice irrigation and ridge technology. It can improve the yield of grain crops and reduce the waste of water resources, which is conducive to the construction of standardized farmland in China. In order to improve the quality of paddy field mechanization ridging and investigate the working parameters of performance of hanging unilateral ridger, the interaction model of machinery and soil was established by using distinct element method. The EDEM software was employed to simulate the processes of rotary tillage collecting soil and compacting ridging. And then the dynamic behaviors of performance and power consumption of ridger were researched under the working conditions. The principal factors which affected the quality of machine operation were analyzed. Orthogonal simulation experiment was carried out with forward speed, rotational speed, tillage depth as experimental factors and ridge density and power consumption as assessment consumption. Based on experimental data, a mathematical model was built by using the Design-Expert 6.0.10 software, and the experimental factors were optimized, the best combination was achieved. By using range analysis method and variance analysis method to determine the importance index, the primary and secondary indexes were as follows: forward speed, tillage depth and rotational speed. And the experiment results showed that forward speed was 0.3m/s, rotational speed was 470r/min, tillage depth was 200mm, and the maximum ridge density was 1890.0kPa, the minimum power consumption was 30.07kW, and the improved power consumption exceeded the original one by 9.93kW. Finally, the bench test was conducted to verify the accuracy of simulation results and optional parameters, which showed that the relative error of ridge density was 4.26% and the relative error of power consumption was 5.11%, indicating that the simulated values were basically coincided with testing values, which proved that the modeling and simulating methods adopted met the content requirement.