亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SW-SVR的畜禽養(yǎng)殖物聯(lián)網(wǎng)異常數(shù)據(jù)實(shí)時(shí)檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)項(xiàng)目(2013AA102306)和山東省自主創(chuàng)新項(xiàng)目(2014XGA13054)


Anomaly Data Real-time Detection Method of Livestock Breeding Internet of Things Based on SW-SVR
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    畜禽養(yǎng)殖物聯(lián)網(wǎng)由于工作環(huán)境惡劣、網(wǎng)絡(luò)傳輸故障等因素容易產(chǎn)生異常感知數(shù)據(jù),為保證數(shù)據(jù)質(zhì)量,根據(jù)畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)流周期性、時(shí)序性等特點(diǎn),提出了一種基于滑動(dòng)窗口與支持向量回歸(Sliding window and support vector machines for regression,SW-SVR)的異常數(shù)據(jù)實(shí)時(shí)檢測(cè)方法。首先根據(jù)畜禽物聯(lián)網(wǎng)數(shù)據(jù)流特征周期以及采樣頻率確定滑動(dòng)窗口尺寸;然后通過(guò)SVR模型預(yù)測(cè)畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)流中某一時(shí)刻傳感器測(cè)量值;最后計(jì)算預(yù)測(cè)區(qū)間,根據(jù)實(shí)際測(cè)量值是否落入該區(qū)間判斷是否異常并對(duì)異常數(shù)據(jù)進(jìn)行置換處理。采用畜禽養(yǎng)殖物聯(lián)網(wǎng)環(huán)境數(shù)據(jù)進(jìn)行試驗(yàn),結(jié)果表明:所提滑動(dòng)窗口計(jì)算方法得到的窗口尺寸預(yù)測(cè)的MAPE為0.1884,畜禽養(yǎng)殖物聯(lián)網(wǎng)異常數(shù)據(jù)檢測(cè)率達(dá)98%,能夠有效檢測(cè)和處理畜禽養(yǎng)殖物聯(lián)網(wǎng)數(shù)據(jù)流中的異常數(shù)據(jù)。

    Abstract:

    Due to bad work environment and network transmission failure, it is easy to generate abnormal sensory data in livestock breeding Internet of things system. In order to ensure the quality of sensory data, according to the characteristics of sensory data flow such as periodicity, temporality, infinity, etc., a method was proposed based on sliding window and support vector machines regression (SW-SVR) for livestock breeding Internet of things abnormal sensory data detection in real time. Firstly, the sliding window size was decided according to the characteristic period and sampling frequency of data flow from livestock breeding Internet of things system, and the history data within sliding window was selected as the input value of prediction model. Then, the sensor estimated measurement value at certain moment in livestock breeding Internet of things system was predicted by using SVR model. Finally, the prediction interval (PI) was calculated, and the abnormal sensory data was identified if the sensor actual measurement data fell out of the PI. The abnormal data would be replaced by the predictive data. The abnormal sensory data detection method was tested by data flow from real livestock breeding Internet of things system. Experiment results showed that the mean absolute percent error value of prediction with window size calculated by the sliding window method was 0.1884. The correct detection rate of abnormal data based on SVR model with radial basis function kernel (RBF kernel) achieved 98%, which had higher accuracy compared with BP neural network (BPNN) method. Abnormal data can be effectively detected and treated in livestock breeding Internet of things system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

段青玲,肖曉琰,劉怡然,張璐.基于SW-SVR的畜禽養(yǎng)殖物聯(lián)網(wǎng)異常數(shù)據(jù)實(shí)時(shí)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(8):159-165. DUAN Qingling, XIAO Xiaoyan, LIU Yiran, ZHANG Lu. Anomaly Data Real-time Detection Method of Livestock Breeding Internet of Things Based on SW-SVR[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(8):159-165.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-08-10
  • 出版日期: