Abstract:In view of the problem that the energy consumption of interconnected suspension is too large and the vibration energy of the suspension cannot be recovered, a new type of hydraulic interconnected power system was presented, which can improve the dynamic performance of the whole vehicle and recover the vibration energy of the suspension. Compared with the passive interconnected suspension, the hydraulic interconnected energy regeneration suspension structure adopted the hydraulic motor to replace the damping valve. The hydraulic rectification bridge was used to rectify the pipeline. On this basis, a constant current control feed circuit was designed. On the one hand, it can be used to recover and store the suspension vibration energy. On the other hand, the constant current value also can be changed to improve the dynamic performance of the whole vehicle. The structure and working principle were introduced, the AMESim dynamic model was established, and the constant current feed energy circuit of the hydraulic interconnected power supply system was designed. A preliminary study on the dynamic performance of the input excitation in sinusoidal and random pavement was studied. On the basis of this, the bench test was carried out,and the experiment and simulation results were basically consistent. Results showed that compared with the hydraulic interconnected energy-regenerative suspension without the control of constant current circuit, the hydraulic interconnected energy-regenerative suspension with the control of constant current circuit had a better overall dynamic performance, the angle acceleration and the vertical acceleration of the vehicle body were decreased, and the recovery of the vibration energy of the vehicle body was realized, which provided a theoretical basis for the mode switching control of the hydraulic interconnected energy-regenerative suspension.