亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

小波變換與分水嶺算法融合的番茄冠層葉片圖像分割
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31360291、31271619)、國家留學(xué)基金委西部地區(qū)人才培養(yǎng)特別項目(201408625069)和蘭州城市學(xué)院博士科研啟動基金項目(LZCU-BS2013-07)


Segmentation of Tomato Leaves from Canopy Images by Combination of Wavelet Transform and Watershed Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在基于機器視覺的作物營養(yǎng)診斷研究中,通常需要采集葉片樣本并在實驗室條件下定量測定其營養(yǎng)素含量,但由于葉片間相互重疊,往往使得葉片樣本不能清晰地反映在群體番茄冠層圖像中。為了解決這一問題,需要利用圖像分析技術(shù)有效提取作物冠層圖像中的葉片,并根據(jù)處理結(jié)果采集實驗室測定樣本。本文從復(fù)雜背景剔除、梯度圖計算、小波變換、標(biāo)記選取、分水嶺分割等環(huán)節(jié)出發(fā),實現(xiàn)了基于小波變換與分水嶺算法融合的番茄冠層多光譜圖像葉片分割。首先對比了4種復(fù)雜背景剔除算法,發(fā)現(xiàn)當(dāng)增強因子a=13時,基于歸一化植被指數(shù)(Normalized difference vegetation index,NDVI)的閾值分割目標(biāo)提取準(zhǔn)確,適合各種光照條件,時空復(fù)雜度低。其次在梯度圖計算方面,近紅外(Near infrared,NIR)波段圖像形態(tài)學(xué)梯度在保持目標(biāo)邊緣的同時,能消除大量由葉脈、光照等引起的葉片內(nèi)紋理細(xì)節(jié)。然后以小波分析為基礎(chǔ)進行標(biāo)記選取,發(fā)現(xiàn)當(dāng)選取db4小波函數(shù)、4層小波分解低頻系數(shù)、閾值為18的Hmaxima 變換能得到最優(yōu)的目標(biāo)標(biāo)記結(jié)果。最后對多光譜番茄冠層圖像的小波變換分水嶺分割和數(shù)學(xué)形態(tài)學(xué)分水嶺分割結(jié)果進行疊加,發(fā)現(xiàn)對復(fù)雜背景及不同光照強度下的番茄冠層葉片平均誤分率為21%,為基于多光譜圖像分析的番茄葉片營養(yǎng)素含量檢測提供了一定的技術(shù)支持。

    Abstract:

    In the study of crop nutrition diagnosis based on machine vision, it is usually necessary to collect leaf samples and quantitatively determine their nutrient content under laboratory conditions. However, due to the overlapping of leaves, the leaf samples cannot be clearly reflected in the canopy image. In order to solve this problem, it is needed to use image analysis technology to effectively extract the leaves in the crop canopy image and according to the processing results to collect laboratory test samples. Based on the complex background extraction, gradient graph calculation, wavelet transform, marker selection and watershed segmentation, the leaf segmentation of tomato canopy multispectral image was realized. Firstly, four kinds of complex background elimination algorithms were compared. It was found that the threshold segmentation based on normalized difference vegetation index (NDVI) was accurate when the enhancement factor was 1.3, which was suitable under various lighting conditions, and the space-time complexity was low. Secondly, in the aspect of gradient graph calculation, the morphological gradient of near-infrared (NIR) band image can eliminate the texture of the leaves caused by veins, light and so on while keeping the target edge. Then, markers of leaves were selected according to wavelet transform that used the low-frequency coefficient of 4-level db4 wavelet decomposition and H-maxima transform with threshold of 18. Finally, the results of wavelet transform watershed segmentation and mathematical morphology watershed segmentation were superimposed, and it was found that the average segmentation error rate of tomato canopy leaves was 21% for complex background and different light intensities, which provided some technical support for the analysis of tomato leaf nutrient content detection.

    參考文獻
    相似文獻
    引證文獻
引用本文

丁永軍,張晶晶,LEE Won Suk,李民贊.小波變換與分水嶺算法融合的番茄冠層葉片圖像分割[J].農(nóng)業(yè)機械學(xué)報,2017,48(9):32-37. DING Yongjun, ZHANG Jingjing, LEE Won Suk, LI Minzan. Segmentation of Tomato Leaves from Canopy Images by Combination of Wavelet Transform and Watershed Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):32-37.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-12-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-09-10
  • 出版日期: