亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于EEMD的水資源監(jiān)測數(shù)據(jù)異常值檢測與校正
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金委員會-廣東聯(lián)合基金項目(U1501253)和廣東省省級科技計劃項目(2016B010127005)


Outlier Detection and Correction for Water Resources Monitoring Data Based on EEMD
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出利用中位數(shù)法與集成經(jīng)驗?zāi)B(tài)分解(EEMD)相結(jié)合的方法對時間序列數(shù)據(jù)的異常值進行檢測,首先通過中位數(shù)法對明顯異常的數(shù)據(jù)進行初步篩選,再用EEMD對剩余數(shù)據(jù)進行分解,通過疊加低頻分量可以擬合出大多數(shù)數(shù)據(jù)的整體變化趨勢,而不受異常值的影響,從而根據(jù)偏差比率可有效檢測出異常值。然后根據(jù)異常值檢測后的時間序列數(shù)據(jù)的凹凸性變化趨勢,用分段曲線擬合對異常值校正。最后,以H1自來水廠的日取水量數(shù)據(jù)為例進行實證分析。結(jié)果表明:提出的中位數(shù)法與EEMD相結(jié)合的方法能夠有效地檢測異常值,校正后得到的數(shù)據(jù)能夠真實反映該水廠取用水情況,可為后續(xù)分析提供更加真實可靠的數(shù)據(jù)。

    Abstract:

    In order to improve the availability and accuracy of online monitoring data of water resources, it is very important to detect and correct the outliers of monitoring data. The water resources monitoring data are non-linear and non-stationary time series data, the outlier detection method of the conventional time series did not take into account the convexity and concavity of time series. A combining median and ensemble empirical mode decomposition (EEMD) method was presented for outlier detection. Firstly, the outliers were preliminarily detected by the median method. And then the remaining data were decomposed by EEMD. The overall trend of most of the data can be fitted by superimposing the low-frequency components, but not affected by outlier, and the outlier can be detected effectively according to the deviation rate. Then, according to change of convexity and concavity of time series data after outlier detection, the method of piecewise curve fitting was used to correct the outliers. Finally, taking the daily water intake data of H1 waterworks as an example, the results showed that the method of combining median and EEMD can detect outliers effectively. The data obtained after correction can truly reflect the actual situation of water intake of waterworks. It can also provide more reliable data for subsequent analysis.

    參考文獻
    相似文獻
    引證文獻
引用本文

方海泉,薛惠鋒,蔣云鐘,周鐵軍,萬毅,王海寧.基于EEMD的水資源監(jiān)測數(shù)據(jù)異常值檢測與校正[J].農(nóng)業(yè)機械學報,2017,48(9):257-263. FANG Haiquan, XUE Huifeng, JIANG Yunzhong, ZHOU Tiejun, WAN Yi, WANG Haining. Outlier Detection and Correction for Water Resources Monitoring Data Based on EEMD[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):257-263.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-02-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-09-10
  • 出版日期: