亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

便攜式豬肉營養(yǎng)組分無損實時檢測裝置研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2016YFD0401205)和公益性行業(yè)(農(nóng)業(yè))科研專項(201003008)


Portable Nondestructive Detection Device for Nutrient Components of Pork
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)豬肉營養(yǎng)組分(脂肪和蛋白質(zhì))的快速、無損、實時檢測,基于近紅外反射光譜設(shè)計了便攜式豬肉營養(yǎng)組分無損檢測裝置。硬件部分包括光譜采集單元、光源單元和控制單元,并開發(fā)了相應(yīng)的檢測軟件,實現(xiàn)樣品光譜信息的有效獲取和實時分析。為了建立穩(wěn)定可靠的預(yù)測模型,考察了波段選擇、樣本分組方式和篩選變量方法對模型的影響。分別基于可見/短波近紅外(Vis/SWNIR)、長波近紅外(LWNIR)及Vis/SWNIR-LWNIR,利用隨機選擇法(RS)、Kennard-Stone法(KS)和基于聯(lián)合X-Y距離的樣本劃分法(SPXY)對樣本進(jìn)行劃分,建立了脂肪和蛋白質(zhì)質(zhì)量分?jǐn)?shù)的偏最小二乘預(yù)測模型。結(jié)果發(fā)現(xiàn),基于Vis/SWNIR-LWNIR波段,利用SPXY算法進(jìn)行樣本分組,取得了最佳的預(yù)測模型。在此基礎(chǔ)上,比較分析競爭性自適應(yīng)加權(quán)算法、隨機蛙跳算法和蒙特卡羅無信息變量消除-連續(xù)投影算法3種算法篩選變量建立的模型效果?;诟偁幮宰赃m應(yīng)加權(quán)算法篩選變量的模型結(jié)果最佳,對脂肪和蛋白質(zhì)建立的模型驗證集相關(guān)系數(shù)分別為0.9505和0.9510。結(jié)果表明:基于近紅外反射光譜設(shè)計的便攜式豬肉組分檢測裝置可以對脂肪和蛋白質(zhì)含量進(jìn)行快速、無損、實時檢測。

    Abstract:

    In order to realize fast, nondestructive and real-time detection of nutrition components (fat and protein) for pork, a portable nondestructive detection device based on near infrared reflectance spectra was designed and developed. The hardware part included spectrum acquisition unit, light source unit and control unit. The corresponding detection software was developed to realize the effective acquisition and real-time analysis of the sample spectrum information. In order to establish a stable and reliable forecasting model, the research focused on the effects of band selection, different sample grouping methods and variables selection methods on the models. Based on visible/short wavelength near infrared (Vis/SWNIR), long wavelength near-infrared (LWNIR) and Vis/SWNIR-LWNIR, all the samples were divided by random selection (RS) method, Kennard-Stone (KS) algorithm and sample set partitioning based on joint X-Y distances (SPXY) algorithm, and then partial least square prediction models for fat and protein content were built, respectively. The results showed that the best prediction models for fat and protein were built based on Vis/SWNIR-LWNIR by using SPXY algorithm. On the basis of the best model for each parameter, comparative analysis of competitive adaptive weighted algorithm, Random Frog algorithm and uninformative variable elimination-successive projection algorithm were employed to screen variables. The results showed that the simplified model based on competitive adaptive weighting algorithm was the best with correlation coefficients in the prediction set of 0.9505 and 0.9510 for fat and protein, respectively. The results indicated that the designed portable detection device based on near infrared reflectance spectroscopy was able to realize fast, nondestructive and real-time detection of fat and protein content for fresh meat and had certain application potential and market prospects.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王文秀,彭彥昆,鄭曉春,孫宏偉,田芳,白京.便攜式豬肉營養(yǎng)組分無損實時檢測裝置研究[J].農(nóng)業(yè)機械學(xué)報,2017,48(9):303-311. WANG Wenxiu, PENG Yankun, ZHENG Xiaochun, SUN Hongwei, TIAN Fang, BAI Jing. Portable Nondestructive Detection Device for Nutrient Components of Pork[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(9):303-311.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-02-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-09-10
  • 出版日期: