亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于隨機(jī)森林算法的自然光照條件下綠色蘋果識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31471409、 31371532)


Green Apple Recognition in Natural Illumination Based on Random Forest Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    果實(shí)識(shí)別是自動(dòng)化采摘系統(tǒng)中的重要環(huán)節(jié),能否快速、準(zhǔn)確地識(shí)別出果實(shí)直接影響采摘機(jī)器人的實(shí)時(shí)性和可靠性。為了實(shí)現(xiàn)自然光照條件下綠色蘋果的識(shí)別,本文采集了果實(shí)生長(zhǎng)期蘋果樹圖像,并利用隨機(jī)森林算法實(shí)現(xiàn)了綠色蘋果果實(shí)的分類和識(shí)別。針對(duì)果樹背景顏色和紋理特征的復(fù)雜性,尤其是綠色果實(shí)和葉片在很多特征上的相似性,論文基于RGB顏色空間進(jìn)行了Otsu閾值分割和濾波處理,去除枝干等背景,得到僅剩果實(shí)和葉片的圖像。然后,分別提取葉片和蘋果的灰度及紋理特征構(gòu)成訓(xùn)練集合,建立了綠色蘋果隨機(jī)森林識(shí)別模型,并使用像素模板驗(yàn)證數(shù)據(jù)集,對(duì)模型進(jìn)行預(yù)測(cè)試驗(yàn),正確率為90%。最后,選擇10幅自然光照條件下不同的果樹圖像作為檢測(cè)對(duì)象,使用該模型進(jìn)行果實(shí)識(shí)別并使用霍夫變換繪制果實(shí)輪廓,平均識(shí)別正確率為88%。結(jié)果表明,該方法具有較高的魯棒性、穩(wěn)定性、準(zhǔn)確性,能夠用于自然光照條件下綠色果實(shí)的快速識(shí)別。

    Abstract:

    In the automatic fruit picking system, it is one of the most important aspects to recognize apples, especially green apples. Quick and accurate identification directly affects realtime operability and reliability of picking robot. In order to realize recognition of green apple in natural illumination condition, images of apple trees in natural growth period were taken, and random forest algorithm was used to classify and identify green apples. To solve complexity and fuzziness of green apples and fruit trees and complex background’s color and texture features, especially similarity of green apples and leaves on many characteristics, the Otsu threshold segmentation method was applied to remove the background noise and tree trunk and branches in images in RGB space so that images contained only green apples and leaves were obtained. After filtering processing on images, the grey level information and texture features of apples and leaves were extracted respectively, and they were used to train and build the green apple identification model based on random forest algorithm. Then green apple prediction experiments were carried out for the sample images by using template pixel scanning, and the predicting accuracy reached 90%. Finally, ten green apple tree images were chosen to execute green apple recognition by using the model, and with Hough transform method to mark the identified apples. It illustrated that the green apple recognition rate reached 88%. The results showed that the method had a good robustness, stability and accuracy, and it could be used to recognize green fruits under natural illumination conditions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

廖崴,鄭立華,李民贊,孫紅,楊瑋.基于隨機(jī)森林算法的自然光照條件下綠色蘋果識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(s1):86-91. LIAO Wei, ZHENG Lihua, LI Minzan, SUN Hong, YANG Wei. Green Apple Recognition in Natural Illumination Based on Random Forest Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(s1):86-91.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-10
  • 出版日期:
文章二維碼