0.80。說(shuō)明ARMA模型數(shù)據(jù)填補(bǔ)效果較好。將填補(bǔ)后的不同縣的數(shù)據(jù)通過(guò)BP神經(jīng)網(wǎng)絡(luò)建立模型,描述了各縣市單位面積化肥用量和糧食產(chǎn)量的關(guān)聯(lián)關(guān)系。實(shí)驗(yàn)表明,該方法擬合的均方誤差小于0.12,R2>0.80,說(shuō)明BP神經(jīng)網(wǎng)絡(luò)是一種準(zhǔn)確度較高的擬合方法。通過(guò)分析各縣擬合結(jié)果,表明化肥用量有閾值,化肥用量低于該閾值,糧食產(chǎn)量將會(huì)較快速增長(zhǎng),高于該閾值,糧食產(chǎn)量將不再增長(zhǎng),過(guò)多的施用化肥并不能取得高產(chǎn)。"/>

亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于BP神經(jīng)網(wǎng)絡(luò)的糧食產(chǎn)量與化肥用量相關(guān)性研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61601471)、北京市自然科學(xué)基金項(xiàng)目(4164090)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(2017QC077)


Correlation between Grain Yield and Fertilizer Use Based on Back Propagation Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)太湖流域化肥用量和糧食產(chǎn)量數(shù)據(jù),利用BP神經(jīng)網(wǎng)絡(luò)算法,建立了糧食產(chǎn)量與化肥用量之間的關(guān)系模型,以指導(dǎo)化肥減施增效。共收集了1980—2014年共35a太湖流域16個(gè)縣市每個(gè)縣市的單位面積化肥用量和單位面積糧食產(chǎn)量數(shù)據(jù)。通過(guò)自回歸滑動(dòng)平均模型(ARMA),對(duì)兩類(lèi)數(shù)據(jù)進(jìn)行時(shí)間序列分析,對(duì)數(shù)據(jù)中存在的缺項(xiàng)進(jìn)行了填補(bǔ)。實(shí)驗(yàn)表明,對(duì)于單位面積糧食產(chǎn)量數(shù)據(jù),用ARMA(2,6)模型能夠達(dá)到較佳的填補(bǔ)效果,均方誤差小于0.2,R2>0.85。對(duì)于單位面積化肥用量數(shù)據(jù),用ARMA(3,7)模型較優(yōu),均方誤差小于0.02,R2>0.80。說(shuō)明ARMA模型數(shù)據(jù)填補(bǔ)效果較好。將填補(bǔ)后的不同縣的數(shù)據(jù)通過(guò)BP神經(jīng)網(wǎng)絡(luò)建立模型,描述了各縣市單位面積化肥用量和糧食產(chǎn)量的關(guān)聯(lián)關(guān)系。實(shí)驗(yàn)表明,該方法擬合的均方誤差小于0.12,R2>0.80,說(shuō)明BP神經(jīng)網(wǎng)絡(luò)是一種準(zhǔn)確度較高的擬合方法。通過(guò)分析各縣擬合結(jié)果,表明化肥用量有閾值,化肥用量低于該閾值,糧食產(chǎn)量將會(huì)較快速增長(zhǎng),高于該閾值,糧食產(chǎn)量將不再增長(zhǎng),過(guò)多的施用化肥并不能取得高產(chǎn)。

    Abstract:

    A strong correlation exists between fertilizer application and grain yield. Due to many factors affecting grain yield, the existing fitting methods of correlation between the two variables lead to large errors. Aiming at the data of fertilizer application and grain yield in Taihu Lake Basin, the back propagation (BP) neural network was used in this paper to model the correlation between the two variables accurately, which could guide to reduce use of fertilizer. This paper collected average fertilizer use and grain yield data per acre in 35 years i.e. from 1980 to 2014, in 16 counties and cities in Taihu Lake Basin. Missing items were filled automatically through a time series analysis approach called auto-regressive and moving average model (ARMA). For average grain yield data, ARMA(2, 6) model had higher accuracy with mean square error (MSE) less than 0.2 and R2 more than 0.85. For average fertilizer use, ARMA(3, 7) model had higher accuracy with MSE less than 0.02 and R2 more than 0.80. Then BP neural network with a single hidden layer (1-10-1) was established to fit correlation fertilizer use and grain yield data in each country. Goodness of the fit with BP neural network was better than other methods, with MSE less than 0.12 and R2 more than 0.80. Results indicate that there is a threshold for fertilizer use. When fertilizer is used less than the threshold, grain yield per acre is more, whereas when it is more than the threshold, grain yield per acre fluctuates and the average keeps invariant. The correlation implies excessive application of fertilizers can not achieve high yields.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李想,戴維,高紅菊,徐文平,魏小紅.基于BP神經(jīng)網(wǎng)絡(luò)的糧食產(chǎn)量與化肥用量相關(guān)性研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(s1):186-192. LI Xiang, DAI Wei, GAO Hongju, XU Wenping, WEI Xiaohong. Correlation between Grain Yield and Fertilizer Use Based on Back Propagation Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(s1):186-192.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-10
  • 出版日期:
文章二維碼