亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于灰度關(guān)聯(lián)-極限學(xué)習(xí)機(jī)的土壤全氮預(yù)測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0201500-2017YFD0201501、2016YFD0700300-2016YFD0700304)


Soil Total Nitrogen Content Prediction Based on Gray Correlation-extreme Learning Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了克服近紅外光譜的多重共線性、吸光度非線性等特點(diǎn)給土壤全氮含量預(yù)測(cè)帶來的影響,引入灰度關(guān)聯(lián)-極限學(xué)習(xí)機(jī)方法選擇出具有較好預(yù)測(cè)能力的波長(zhǎng)組合,以建立高精度土壤全氮含量預(yù)測(cè)模型。首先利用一階微分光譜得到反映土壤全氮含量的敏感譜區(qū),再利用灰度關(guān)聯(lián)法得到土壤全氮含量的敏感波長(zhǎng),分別為1007、1128、1360、1596、1696、1836、2149、2262nm。最后采用極限學(xué)習(xí)機(jī),將上述敏感波長(zhǎng)作為輸入,建立了土壤全氮預(yù)測(cè)模型。作為對(duì)照,同時(shí)采用傳統(tǒng)相關(guān)分析方法選擇了敏感波長(zhǎng)并建立了回歸模型。2種建模結(jié)果表明,灰度關(guān)聯(lián)-極限學(xué)習(xí)機(jī)建立的土壤全氮預(yù)測(cè)模型,其建模決定系數(shù)R2c為0.9134,預(yù)測(cè)決定系數(shù)R2v為0.8787,建模精度和預(yù)測(cè)精度都比傳統(tǒng)建模方法高。特別在預(yù)測(cè)低氮含量土壤時(shí),灰度關(guān)聯(lián)-極限學(xué)習(xí)機(jī)方法優(yōu)勢(shì)更明顯。

    Abstract:

    In order to overcome the influences of multi-collinearity and absorbance non-linearity in near-infrared spectroscopy on predicting soil total nitrogen content, the gray correlation-extreme learning machine method was used to select the combination wavebands with good prediction capability to establish high precision prediction model for soil total nitrogen content. First, the first derivative spectra was used to get the sensitive spectrum area. And then the grey correlation sensitive wavelength selection method was used to select wavelengths which were respectively 1007, 1128, 1360, 1596, 1696, 1836, 2149 and 2262nm. Finally, by using the above sensitive wavelengths as input data, a soil total nitrogen prediction model was established based on the method of extreme learning machine and multiple linear regression. As a comparison, while using the traditional correlation analysis method to select the sensitive wavelengths, the results showed that R2c of the soil total nitrogen forecast model established by using gray correlation-extreme learning machine was 0.9134, and the prediction R2v was 0.8787. Its accuracy was higher than that of the traditional modeling method. It indicated that the gray correlation-extreme learning machine method had more obvious advantages especially in the prediction of low soil total nitrogen content.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周鵬,楊瑋,李民贊,鄭立華,陳玉青.基于灰度關(guān)聯(lián)-極限學(xué)習(xí)機(jī)的土壤全氮預(yù)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(s1):271-276. ZHOU Peng, YANG Wei, LI Minzan, ZHENG Lihua, CHEN Yuqing. Soil Total Nitrogen Content Prediction Based on Gray Correlation-extreme Learning Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(s1):271-276.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-10
  • 出版日期:
文章二維碼