亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于微信平臺的溫室環(huán)境監(jiān)測與溫度預(yù)測系統(tǒng)
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家星火計劃項目(2015GA600002)


Environment Monitoring and Temperature Prediction in Greenhouse Based on Wechat Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    溫室數(shù)據(jù)采集系統(tǒng)多采用數(shù)據(jù)采集端通過上位機(jī)管理數(shù)據(jù)或上傳至數(shù)據(jù)服務(wù)器的方式進(jìn)行溫室環(huán)境監(jiān)測和管理,該方式網(wǎng)絡(luò)結(jié)構(gòu)相對復(fù)雜,功耗較大。為解決上述問題,本文采用物聯(lián)網(wǎng)、云服務(wù)、微信平臺結(jié)合的方式,設(shè)計開發(fā)了基于微信平臺的溫室環(huán)境監(jiān)測與溫度預(yù)測系統(tǒng)。系統(tǒng)采用數(shù)據(jù)采集端直接通過WiFi/GPRS聯(lián)接互聯(lián)網(wǎng)訪問云服務(wù)器的方式進(jìn)行數(shù)據(jù)交互,手機(jī)移動端通過微信公眾號訪問云服務(wù)器獲取數(shù)據(jù)服務(wù)。溫度預(yù)測模型采用差分時間序列模型,解決溫度預(yù)測過程中季節(jié)周期性的影響。通過對系統(tǒng)數(shù)據(jù)分析證明:系統(tǒng)有效實現(xiàn)了數(shù)據(jù)采集端的輕量化與可移動性,不僅能夠?qū)?shù)據(jù)進(jìn)行有效管理,且溫度監(jiān)測相對誤差低于4.96%,溫度預(yù)測相對誤差低于3%,預(yù)測結(jié)果具有較高的精度,能夠滿足日常生產(chǎn)的需要。

    Abstract:

    The current greenhouse data acquisition system is implemented in the way that data acquisition terminal uploads data to the host computer to manage the data or transfer them to cloud server. The network structure is relatively complex and the power consumption is large. In order to solve the above problems, a greenhouse environment monitoring and temperature prediction system was developed by using the Internet of Things, cloud services and WeChat platform. In this system, the data collection terminal directly connected the Internet to the cloud server through WiFi/GPRS to interact with the data, and the mobile terminal accessed the cloud server to obtain the data service through the WeChat public number. The temperature forecasting model adopted the differential time series model to solve the influence of seasonal periodicity in the temperature prediction process. The data analysis showed that the system effectively realized the lightweight and mobility of the data acquisition terminal. The relative error of temperature monitoring was less than 4.96%, and the relative error of temperature prediction was less than 3%. The prediction result has high precision and can meet the needs of daily production.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

任延昭,陳雪瑞,賈敬敦,高萬林,朱佳佳.基于微信平臺的溫室環(huán)境監(jiān)測與溫度預(yù)測系統(tǒng)[J].農(nóng)業(yè)機(jī)械學(xué)報,2017,48(s1):302-307. REN Yanzhao, CHEN Xuerui, JIA Jingdun, GAO Wanlin, ZHU Jiajia. Environment Monitoring and Temperature Prediction in Greenhouse Based on Wechat Platform[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(s1):302-307.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-10
  • 出版日期:
文章二維碼