亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

春秋茬溫室番茄光合速率預(yù)測(cè)模型通用性研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300600-2016YFD0300606)


Photosynthetic Rate Prediction of Tomato under Greenhouse Condition in Spring and Autumn Growth Period
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于無(wú)線傳感器網(wǎng)絡(luò),建立了春秋茬溫室番茄光合速率預(yù)測(cè)模型。在2014年秋季與2015年春季,采用無(wú)線傳感器網(wǎng)絡(luò)自動(dòng)獲取溫室環(huán)境因子信息,包括空氣溫濕度、土壤溫濕度、光強(qiáng)與CO2濃度。同時(shí)采用LI-6400XT型光合儀測(cè)定植物的單葉凈光合速率,利用葉室小環(huán)境來(lái)擴(kuò)展數(shù)據(jù)范圍。將采集到的溫室環(huán)境信息作為輸入?yún)?shù),單葉凈光合速率作為輸出參數(shù),利用神經(jīng)網(wǎng)絡(luò)建立番茄光合速率預(yù)測(cè)模型。為了提高模型的預(yù)測(cè)精度,首先使用Z分?jǐn)?shù)對(duì)輸入?yún)?shù)進(jìn)行標(biāo)準(zhǔn)化,然后對(duì)標(biāo)準(zhǔn)化后的數(shù)據(jù)進(jìn)行主成分分析;其次,根據(jù)各主成分的累積貢獻(xiàn)率選取主成分,然后經(jīng)過(guò)K折交叉檢驗(yàn)后建立神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型。結(jié)果表明,采用2014年秋季數(shù)據(jù)建立的預(yù)測(cè)模型,相關(guān)系數(shù)為0.99;2015年春季為0.95;用兩季數(shù)據(jù)聯(lián)合建立的通用模型,相關(guān)系數(shù)為0.85。利用春秋茬聯(lián)合數(shù)據(jù)建立的溫室番茄光合速率預(yù)測(cè)模型通用性較好,可以為日光溫室CO2氣肥精細(xì)調(diào)控提供理論支持。

    Abstract:

    Photosynthesis is the basis of plant growth and photosynthetic rate directly affecting the quality of fruit. The quantity and quality of tomato can be improved with the application of the appropriate amount of CO2, which is one of the principal raw material of photosynthesis. In this paper, photosynthetic rate prediction models under greenhouse condition in spring and autumn growth period were established respectively. The experimental data were collected during autumn of 2014 and spring of 2015. WSN was used to monitor greenhouse environmental parameters in real time, including air temperature, air humidity, CO2 concentration, soil temperature, soil moisture, and light intensity. An LI-6400XT portable photosynthesis analyzer was used to measure the photosynthetic rate of tomato plants, and the environmental information of leaves was controlled by small chamber environment. In order to verify the universality of the established model, three models using the data from both spring and autumn growth period, data only from spring growth period, and the data only from autumn growth period were established. The photosynthetic rate prediction models of single leaf were established based on the back propagation (BP) neural network. The environmental parameters were used as input neurons and the photosynthetic rate was taken as the output neuron. In order to improve the prediction accuracy of the model, the input neurons were standardized using Z score method and then processed by principal component analysis. Principal components were selected according to the principal components’ cumulative contribution rate. The photosynthetic rate prediction models of single leaf were established after principal components analysis and K-fold cross validation. The results indicated that the correlation coefficient of photosynthesis prediction model based on the data of spring 2015, autumn 2014 and the two seasons were 0.99, 0.95 and 0.85 respectively. The results of the models indicated that the universality of the model built using data from both seasons, and it has great potential for CO2 fertilizer control.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

殷鑒,劉新英,張漫,李寒.春秋茬溫室番茄光合速率預(yù)測(cè)模型通用性研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(s1):327-333. YIN Jian, LIU Xinying, ZHANG Man, LI Han. Photosynthetic Rate Prediction of Tomato under Greenhouse Condition in Spring and Autumn Growth Period[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(s1):327-333.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-10
  • 出版日期:
文章二維碼