亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

二次聚類與神經(jīng)網(wǎng)絡(luò)結(jié)合的日光溫室溫度二步預(yù)測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(61601471)、北京市自然科學(xué)基金項(xiàng)目(4164090)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2017QC077)


Two-steps Prediction Method of Temperature in Solar Greenhouse Based on Twice Cluster Analysis and Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    精確預(yù)測日光溫室溫度是實(shí)現(xiàn)對溫室精準(zhǔn)調(diào)控的前提。由于溫室是復(fù)雜非線性系統(tǒng),受室內(nèi)外眾多環(huán)境因素影響,且部分因素難以準(zhǔn)確測量和建模,因此,難以通過機(jī)理分析建立室外因素精確影響室內(nèi)溫度的物理模型。而現(xiàn)有時(shí)間序列分析、人工神經(jīng)網(wǎng)絡(luò)等僅基于數(shù)據(jù)的方法預(yù)測準(zhǔn)確度也較低。本文提出連續(xù)時(shí)間段聚類與BP神經(jīng)網(wǎng)絡(luò)相結(jié)合的二步日光溫室溫度預(yù)測方法。首先,進(jìn)行二次聚類,對室外溫度情況相似的日進(jìn)行聚類,并將全年劃分為若干個類似時(shí)間段,根據(jù)連續(xù)時(shí)間段內(nèi)相似日的數(shù)量進(jìn)行聚類,將全年內(nèi)的連續(xù)時(shí)間段歸入若干類別。其次,對不同類別的時(shí)間段,分別采用BP神經(jīng)網(wǎng)絡(luò)建立室外溫度、相對濕度、太陽輻射、風(fēng)速和溫室室內(nèi)溫度間的關(guān)聯(lián)模型,通過數(shù)據(jù)訓(xùn)練,能夠較為準(zhǔn)確的根據(jù)室外環(huán)境數(shù)據(jù)預(yù)測室內(nèi)溫度。通過涿州實(shí)驗(yàn)農(nóng)場2年數(shù)據(jù)試驗(yàn)驗(yàn)證,通過二次聚類,全年連續(xù)時(shí)間段可劃分為3類,通過分別建立BP神經(jīng)網(wǎng)絡(luò)并分別訓(xùn)練,結(jié)果表明本方法預(yù)測誤差僅為6.23%,與現(xiàn)有未分類的BP神經(jīng)網(wǎng)絡(luò)預(yù)測算法對比,本文方法有效地提高了準(zhǔn)確度,平均誤差降低5.4個百分點(diǎn)。

    Abstract:

    Accurate prediction of indoor temperature in solar greenhouse is a precondition to accurately control the greenhouse. Because indoor temperature in solar greenhouse is affected by several outdoor environmental factors and the heat conduction mechanism is complex, indoor temperature changes severely in different time. Thus, it is difficult to establish an accurate physical model that describes how outdoor factors affect indoor temperature by mechanism analysis. The accuracy of existing prediction methods based on neural network is low. So,this paper proposed a two-steps method to predict indoor temperature in solar greenhouse based on twice cluster analysis and back propagation (BP) neural network. The first step of the method was two clustering. Similar days were classified to several categories according to clustering of outdoor temperature. Then a whole year training data were split to several continuous time frames.The frames were classified into different categories by clustering of similar days. In the second step, for different categories of time frames, different BP neural networks respectively modeled the relationships between input variables i.e. outdoor temperature, relative humidity, solar radiation, and wind speed and output variable i.e. indoor temperature. The models could be used to predict indoor temperature in solar greenhouse when the outdoor environment was detected. In experiments, two years data was collected from Zhuozhou. For the data, continuous time frames were split to 3 categories.Through the establishment of BP neural network and training respectively, the results show that the prediction error of this method is only 6.23%. Compared with the existing BP neural network prediction algorithm, this method can effectively improve the accuracy, and the average error is reduced by 5.4 percentage points.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳昕,唐湘璐,李想,劉天麒,賈璐,盧韜.二次聚類與神經(jīng)網(wǎng)絡(luò)結(jié)合的日光溫室溫度二步預(yù)測方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(s1):353-358. CHEN Xin, TANG Xianglu, LI Xiang, LIU Tianqi, JIA Lu, LU Tao. Two-steps Prediction Method of Temperature in Solar Greenhouse Based on Twice Cluster Analysis and Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(s1):353-358.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-07-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-10
  • 出版日期:
文章二維碼