亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Sentinel-2遙感影像的玉米冠層葉面積指數(shù)反演
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41371327、41671433)


Retrieving Leaf Area Index of Corn Canopy Based on Sentinel-2 Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    葉面積指數(shù)是描述玉米冠層結(jié)構(gòu)的重要參數(shù)之一,決定玉米冠層的光合作用、呼吸作用、蒸騰和碳循環(huán)等生物物理過程,因此精確反演葉面積指數(shù)對(duì)玉米長(zhǎng)勢(shì)監(jiān)測(cè)具有重要意義。以河北省保定市的涿州市、高碑店市、定興縣為研究區(qū),利用Sentinel-2遙感影像和LAI-2000地面同步實(shí)測(cè)數(shù)據(jù)進(jìn)行玉米冠層葉面積指數(shù)反演,使用歸一化差異光譜指數(shù)和比值型光譜指數(shù)兩類指數(shù),構(gòu)建了單變量和多變量玉米冠層葉面積指數(shù)反演模型,通過決定系數(shù)(R2)和均方根誤差(RMSE)篩選出最佳模型。研究結(jié)果表明,由NDSI(783,705)構(gòu)建的單變量模型為最優(yōu)反演模型,其決定系數(shù)為0.5342,均方根誤差為0.2885。因此,基于Sentinel-2遙感影像利用植被指數(shù)反演玉米冠層葉面積指數(shù)的方法可作為判斷玉米長(zhǎng)勢(shì)狀況的初步判斷依據(jù)。

    Abstract:

    Leaf area index is one of the important parameters to describe the canopy structure of corn, which determines the biophysical processes of corn canopy photosynthesis, respiration, transpiration and carbon cycle. Therefore, retrieval of leaf area index is of great significance to corn growth monitoring. The Sentinel-2 remote sensing image and LAI-2000 ground synchronous data were used to retrieve the leaf area index of corn canopy. Normalized difference spectral index (NDSI) and ratio spectral index (RSI) were extracted to build the univariate and multivariate empirical models. The best LAI retrieving models were identified based on the best combinations of coefficient of determination (R2) and root mean square error (RMSE). Finally, spatial distributions of LAI in the study area were mapped through the optimal retrieve model. Results showed that all spectral indices tested were significantly correlated with LAI of corn, and the correlation between spectral indices built with red-edge bands and LAI was higher than that built without red-edge bands. Validation analysis result indicated that although the accuracy of the multivariate empirical model was high, its ability to predict LAI was poor. Linear regression model of NDSI(783,705) most accurately explained retrieval of LAI of corn, with R2 of 0.5342 and RMSE of 0.2885. Therefore, linear regression model of NDSI(783,705) was recommended as the most legible model for estimating LAI of corn. The red-edge bands confirmed from Sentinel-2 remote sensing image improved the accuracy of retrieving the LAI of corn. Moreover, the results also provided a powerful evidence to develop the Sentinel-2 remote sensing image and red-edge bands application in retrieving the LAI of corn.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蘇偉,侯寧,李琪,張明政,趙曉鳳,蔣坤萍.基于Sentinel-2遙感影像的玉米冠層葉面積指數(shù)反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(1):151-156. SU Wei, HOU Ning, LI Qi, ZHANG Mingzheng, ZHAO Xiaofeng, JIANG Kunping. Retrieving Leaf Area Index of Corn Canopy Based on Sentinel-2 Remote Sensing Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(1):151-156.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-04-25
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-01-10
  • 出版日期: