亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于顏色與面積特征的方格蔟蠶繭分割定位算法與試驗(yàn)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-18-ZJ0402)、山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)項(xiàng)目(SDAIT-18-06)和山東省“雙一流”獎(jiǎng)補(bǔ)資金項(xiàng)目(564047)


Algorithm and Experiment of Cocoon Segmentation and Location Based on Color and Area Feature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    蠶蟲上蔟多采用紙板方格蔟,但紙板方格蔟在使用過程中會(huì)因扭曲變形導(dǎo)致方格分布不規(guī)則,而采繭機(jī)械對(duì)變形的方格蔟進(jìn)行蠶繭采摘時(shí),會(huì)對(duì)方格蔟造成損傷。為了提高方格蔟機(jī)械采繭的智能化水平,減少采繭設(shè)備對(duì)方格蔟的損傷,提出一種基于顏色與面積特征的方格蔟蠶繭分割定位算法,實(shí)現(xiàn)對(duì)方格蔟中蠶繭的分割、中心點(diǎn)定位和位置坐標(biāo)的視覺測(cè)量。首先采用圖像空間的Brown畸變模型對(duì)方格蔟圖像進(jìn)行畸變矯正,減小徑向畸變對(duì)視覺測(cè)量的影響;對(duì)矯正后的圖像采用Mean Shift聚類算法進(jìn)行預(yù)分割,消除光照及圖像背景對(duì)蠶繭分割的影響;然后對(duì)閾值分割和形態(tài)學(xué)處理后的二值化蠶繭圖像進(jìn)行基于面積特征的連通域標(biāo)定,得到每個(gè)蠶繭中心點(diǎn)位置;將連通域標(biāo)定得到的蠶繭中心點(diǎn)坐標(biāo)代入圖像坐標(biāo)系與世界坐標(biāo)系轉(zhuǎn)換方程,得到每個(gè)蠶繭在笛卡爾空間的三維坐標(biāo),經(jīng)過視覺測(cè)量確定蠶繭在方格蔟中的具體位置,控制蠶繭采摘裝置采摘方格蔟中的蠶繭。經(jīng)過試驗(yàn),該算法對(duì)方格蔟中的蠶繭檢測(cè)正確率為96.88%,蠶繭坐標(biāo)最大定位偏差小于6.0mm,滿足采繭裝置對(duì)蠶繭采摘的定位精度要求。

    Abstract:

    To improve the lower efficiency of silkworm cocoon harvesting, an algorithm of cocoon image segmentation and coordinate location was proposed based on color and area characteristics, and a cocoon harvestor was designed based on machine vision. The monocular CMOS camera was firstly used in the algorithm to take image of checker cocooning frame. And the non-measurement distortion correction method was used to correct the image. Secondly, the camera model was calibrated with the internal parameters for the monocular two-dimensional visual measurement system. The image was smoothed via gray and mean shift filter method because the outer floss of the cocoon can cause wrong segmentation of the image in checker cocooning frame image. Then the binary image was obtained by threshold segmentation. Next, the binary image was processed by open operation and area feature extraction method to remove noise region. A part of the smaller noise connected components can be removed by the open operation. The cocoon region can be extracted by the area characteristic when the large area of the connected components can be removed. The center point coordinates of the cocoon region were got by the connected components calibration, and were mapped into the world coordinates through the equation that transformed image coordinates to world coordinates to get the cocoons’ positions in the Cartesian space. Finally, the cocoons were harvested by the cocoon harvestor. According to the experiment, the algorithm had the accuracy rate of 96.88% for the cocoon detection in the checker cocooning frame and less than 6.0mm for the cocoon coordinate, which satisfied the requirement of the location of cocoon harvesting.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉莫塵,許榮浩,李法德,宋占華,閆銀發(fā),韓守強(qiáng).基于顏色與面積特征的方格蔟蠶繭分割定位算法與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(3):43-50. LIU Mochen, XU Ronghao, LI Fade, SONG Zhanhua, YAN Yinfa, HAN Shouqiang. Algorithm and Experiment of Cocoon Segmentation and Location Based on Color and Area Feature[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(3):43-50.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-11-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-03-10
  • 出版日期:
文章二維碼