亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于SCE-UA算法的小麥穗分化期模擬模型參數(shù)優(yōu)化
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(41471342)


Parameters Optimization of Wheat Spike Differentiation Stages Model Based on SCE-UA Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    以河南省商丘市為研究區(qū),首先采用OAT(One-at-a-time)方法對WheatGrow模型的輸入品種參數(shù)進(jìn)行敏感性分析,在此基礎(chǔ)上以抽穗期的開始日期作為約束條件構(gòu)建代價(jià)函數(shù),引入SCE-UA(Shuffled complex evolution method developed at the University of Arizona)算法求解得到最優(yōu)作物品種參數(shù)組合,并利用2015—2016年度和2016—2017年度田間實(shí)驗(yàn)資料對SCE-UA算法的有效性進(jìn)行驗(yàn)證。結(jié)果表明,基本早熟性參數(shù)對穗分化期的模擬結(jié)果影響最顯著,溫度敏感性參數(shù)比光周期敏感性參數(shù)和生理春化時(shí)間參數(shù)具有更高的敏感度,生理春化時(shí)間的敏感度最低?;趦?yōu)化后的參數(shù)得到的穗分化期模擬值與觀測值之間的平均絕對誤差(Mean absolute error,MAE)和均方根誤差(Root mean square error,RMSE)均小于3d,表明SCE-UA算法可以有效地獲取WheatGrow模型最優(yōu)品種參數(shù)組合。本研究可為WheatGrow模型品種參數(shù)的調(diào)整優(yōu)化和模型的推廣應(yīng)用提供依據(jù)。

    Abstract:

    WheatGrow model is a mechanism model for the simulation of growth and development process of wheat spike differentiation, but the crop varietal parameters to drive the model are more difficult to obtain, which greatly limits its application. Shangqiu, which is in Henan Provice was taken as the studying area and the sensitivity of varietal parameters of WheatGrow model was analyzed with the method of one-at-a-time (OAT). On this basis, the cost function was constructed with start date of heading as the constraint condition, and shuffled complex evolution method developed at the University of Arizona(SCE-UA) was applied to search for optimal varietal parameters. At last, a series of experiments on spike differentiation stages were carried out in two years (from 2015 to 2016 and from 2016 to 2017) to verify optimized results and the model. The results showed that intrinsic earliness (IE) had the most significant effect on the simulation results of spike differentiation stages, temperature sensitivity (TS) had higher sensitivity than photoperiod sensitivity (PS) and physiological vernalization time (PVT), and the sensitivity of physiological vernalization time (PVT) was the lowest of all varietal parameters. The mean absolute error (MAE) and root mean square error (RMSE) between the simulated and the observed values of the spike differentiation stages based on the optimized parameters were both less than three days, indicating that the SCE-UA algorithm can effectively obtain the optimal parameters of WheatGrow model. Therefore, the SCE-UA algorithm was a feasible optimization method for WheatGrow calibration and validation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉峻明,潘佩珠,王鵬新,崔珍珍,胡新.基于SCE-UA算法的小麥穗分化期模擬模型參數(shù)優(yōu)化[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):232-240. LIU Junming, PAN Peizhu, WANG Pengxin, CUI Zhenzhen, HU Xin. Parameters Optimization of Wheat Spike Differentiation Stages Model Based on SCE-UA Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(4):232-240.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-09-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-04-10
  • 出版日期: