亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于核自適應濾波的無線傳感網(wǎng)絡定位算法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(51467008)和蘭州交通大學優(yōu)秀科研團隊項目(201701)


Wireless Sensor Network Location Algorithms Based on Kernel Adaptive Filtering
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對動態(tài)室內(nèi)環(huán)境的變化及時變的接收信號強度(Received signal strength, RSS)對定位精度的影響,提出了一類基于核自適應濾波算法的農(nóng)業(yè)無線傳感器網(wǎng)絡室內(nèi)定位方法。核自適應濾波算法具體包括量化核最小均方(Quantized kernel least mean square, QKLMS)算法及固定預算(Fixedbudget, FB)核遞推最小二乘(Kernel recursive leastsquares, KRLS)算法。QKLMS算法基于一種簡單在線矢量量化方法替代稀疏化,抑制核自適應濾波中徑向基函數(shù)結構的增長。FB-KRLS算法是一種固定內(nèi)存預算的在線學習方法,與以往的“滑窗”技術不同,每次時間更新時并不“修剪”最舊的數(shù)據(jù),而是旨在“修剪”最無用的數(shù)據(jù),從而抑制核矩陣的不斷增長。通過構建RSS指紋信息與物理位置之間的非線性映射關系,核自適應濾波算法實現(xiàn)WSN的室內(nèi)定位,將所提出的算法應用于仿真與物理環(huán)境下的不同實例中,在同等條件下,還與其他核學習算法、極限學習機(Extreme learning machine, ELM)等定位算法進行比較。仿真實驗中2種算法在3種情形下的平均定位誤差分別為0.746、0.443m, 物理實驗中2種算法在2種情形下的平均定位誤差分別為 0.547、0.282m。實驗結果表明,所提出的核自適應濾波算法均能提高定位精度,其在線學習能力使得所提出的定位算法能自適應環(huán)境動態(tài)的變化。

    Abstract:

    For the change of dynamic indoor environment and the effect of time-varying received signal strength on positioning accuracy, a class of indoor positioning algorithms for agricultural wireless sensor networks using kernel adaptive filtering was proposed, which included quantized kernel least mean square (QKLMS) as well as fixed-budget kernel recursive least-squares (FB-KRLS) algorithm. The QKLMS algorithm used a simple vector quantization approach as an alternative of sparsification to curb the growth of the radial basis function structure in kernel adaptive filtering. The FB-KRLS algorithm was an online kernel method by fixed memory budget, which was capable of recursively learning nonlinear mapping and tracking change over time. In contrast to a previous sliding-window based technique, the presented algorithm did not prune the oldest data point in every time instant but it was aimed to prune the least significant data point, thus suppressing the growth of kernel matrix. The kernel adaptive filtering algorithms achieved the indoor positioning for WSNs by building the non-linear mapping relations between the RSS fingerprint information and the physical location. The employed algorithms were applied to different indoor positioning instances in the simulation and physical environments for WSNs, under the same circumstances, compared with other kernel-based learning methods and extreme learning machine (ELM) etc. In the simulation experiment, the average localization error of the two algorithms was respectively 0.746m and 0.443m under three scenarios, and the average localization error of the two algorithms in the physical experiments was respectively 0.547m and 0.282m under two scenarios. Experimental results showed that the proposed adaptive filtering algorithms can improve the positioning accuracy, and its online learning ability made the proposed two localization algorithms all adaptable to the dynamic changes of the environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

李軍,趙暢.基于核自適應濾波的無線傳感網(wǎng)絡定位算法研究[J].農(nóng)業(yè)機械學報,2018,49(4):241-248. LI Jun, ZHAO Chang. Wireless Sensor Network Location Algorithms Based on Kernel Adaptive Filtering[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(4):241-248.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2017-09-18
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-04-10
  • 出版日期: