亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

多光譜影像混合像元解混的加權(quán)變異系數(shù)分析法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金面上項(xiàng)目(41771449)


Novel Weighted Coefficient of Variation Analysis Approach for Endmember Variability Issue in Unmixing Process of Multi-spectral Imagery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    影像上同物異譜或同譜異物的現(xiàn)象會(huì)造成同一混合像元端元在影像上的光譜不唯一。端元差異問(wèn)題將給端元選擇和提取造成困難,并最終影響混合像元分解的精度。為了盡可能減小端元類(lèi)內(nèi)差異、擴(kuò)大類(lèi)間差異,針對(duì)傳統(tǒng)算法無(wú)法避免端元在不同波段的光譜數(shù)值尺度相差很大且定權(quán)自動(dòng)化程度低的缺陷,將變異系數(shù)概念引入端元差異問(wèn)題研究中,提出一種適用于多光譜數(shù)據(jù)的基于加權(quán)理論的加權(quán)變異系數(shù)分析法(Weighted coefficient of variation analysis, WCVA)。分別從理論和實(shí)驗(yàn)兩方面論證了WCVA的可行性與優(yōu)越性。在對(duì)比實(shí)驗(yàn)中,利用同一地區(qū)的TM和GeoEye多光譜影像,從可視化端元空間分布、算法效率和混合像元最終解混精度比較了WCVA和最佳指數(shù)因子(Optimal index factor, OIF)結(jié)果。實(shí)驗(yàn)證明利用本文提出的WCVA方法獲得的波段組合具有更高的解混精度(0.183和0.160)。同時(shí)運(yùn)算效率明顯高于OIF。因此WCVA不僅能夠有效解決端元差異問(wèn)題,提高混合像元解混的精度,而且具有較高的運(yùn)算效率。

    Abstract:

    The phenomena of different objects having the same spectrum and the same objects having different spectrum bring inconsistency for the same endmember. The existing of endmember variability issue will lead the process of endmember selection and extraction more difficult and decrease the final unmixing accuracy. Aiming to minimize the intraclass variability and maximize the interclass variability, a new method named weighted coefficient of variation analysis (WCVA), which permitted the comparison of variants free from scale effects and made the weighting become more automatic, was proposed for multispectral data. It was on the basis of coefficient of variation (CV) and weighting theory. The proposed method was successfully indicated from theoretical and experimental parts. The comparison with the commonly used optimal index factor (OIF) was conducted in terms of visualizing the spatial distribution of all available band combinations, efficiency and the final unmixing accuracy by fully constrained least squares (FCLS) and post polynomial postnonlinear mixture (PPNM) with TM and GeoEye images in the same research area. In the experimental results, the unmixing accuracy (0.183 and 0.160) based on the feature combination selected by WCVA was higher than that by OIF. Meanwhile, the computation of WCVA was much less than that of OIF as well. The results showed that WCVA not only had benefits for solving endmember variability issue and enhancing the unmixing accuracy, but also had higher efficiency.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宇 潔,葉 勤,林 怡.多光譜影像混合像元解混的加權(quán)變異系數(shù)分析法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(9):154-159. YU Jie, YE Qin, LIN Yi. Novel Weighted Coefficient of Variation Analysis Approach for Endmember Variability Issue in Unmixing Process of Multi-spectral Imagery[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(9):154-159.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-03-26
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2018-09-10
  • 出版日期: 2018-09-10